Skip to main content

Comparative Analysis of MCDM Methods for Assessing the Severity of Chronic Liver Disease

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9119))

Included in the following conference series:

  • 2081 Accesses

Abstract

The paper presents the Characteristic Objects method as a potential multi-criteria decision-making method for use in medical issues. The proposed approach is compared with TOPSIS and AHP. For this purpose, assessment of the severity of Chronic Liver Disease (CLD) is used. The simulation experiment is presented on the basis of the Model For End-Stage Liver Disease (MELD). The United Network for Organ Sharing (UNOS) and Eurotransplant use MELD for prioritizing allocation of liver transplants. MELD is calculated from creatinine, bilirubin and international normalized ratio of the prothrombin time (INR). The correctness of the selection is examined among randomly selected one million pairs of patients. The result is expressed as a percentage of agreement between the assessed method and MELD selection. The Characteristic Objects method is completely free of the rank reversal phenomenon, obtained by using the set of characteristic objects. In this approach, the assessment of each alternative is obtained on the basis of the distance from characteristic objects and their values. As a result, correctness of the selection obtained by using the Characteristic Objects method is higher than those obtained by TOPSIS or AHP techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blair, A.R., Mandelker, G.N., Saaty, T.L., Whitaker, R.: Forecasting the resurgence of the u.s. economy in 2010: An expert judgment approach. Socio-Economic Planning Sciences 44(3), 114–121 (2010)

    Article  Google Scholar 

  2. Boran, F.E., Gen, S., Kurt, M., Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications 36(8), 11363–11368 (2009)

    Article  Google Scholar 

  3. Cholongitas, E., Marelli, L., Shusang, V., Senzolo, M., Rolles, K., Patch, D., Burroughs, A.K.: A systematic review of the performance of the model for end-stage liver disease (MELD) in the setting of liver transplantation. Liver Transplantation 12(7), 1049–1061 (2006)

    Article  Google Scholar 

  4. Dolan, J.G., Isselhardt, B.J., Cappuccio, J.D.: The Analytic Hierarchy Process in Medical Decision Making: A Tutorial. Medical Decision Making 9(1), 40–50 (1989)

    Article  Google Scholar 

  5. Dong, Y., Zhang, G., Hong, W.C., Xu, Y.: Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems 49(3), 281–289 (2010)

    Article  Google Scholar 

  6. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2004)

    Google Scholar 

  7. Garca-Cascalesa, M.S., Lamata, M.T.: On rank reversal and TOPSIS method. Mathematical and Computer Modelling 56(5-6), 10–19 (2012)

    Google Scholar 

  8. Hsu, P.F., Hsu, M.G.: Optimizing the information outsourcing practices of primary care medical organizations using entropy and TOPSIS. Quality and Quantity 42(2), 181–201 (2008)

    Article  Google Scholar 

  9. Hwang, C.L., Lai, Y.J., Liu, T.Y.: A new approach for multiple-objective decision-making. Computers and Operations Research 20(8), 889–899 (1993)

    Article  MATH  Google Scholar 

  10. Hwang, C.L., Yoon, K.P.: Multiple attribute decision making: Methods and applications. Springer, New York (1981)

    Book  MATH  Google Scholar 

  11. Ioannou, G.N., Perkins, J.D., Carithers Jr., R.L.: Liver transplantation for hepatocellular carcinoma: Impact of the MELD allocation system and predictors of survival. Gastroenterology 134(5), 1342–1351 (2008)

    Article  Google Scholar 

  12. Jung, G.E., Encke, J., Schmidt, J., Rahmel, A.: Model for end-stage liver disease. New basis of allocation for liver transplantations. Chirurg 79(2), 157–163 (2008)

    Article  Google Scholar 

  13. Kamath, P.S., Kim, W.: The model for end-stage liver disease (MELD). Hepatology 45(3), 797–805 (2007)

    Article  Google Scholar 

  14. Kamath, P.S., Wiesner, R.H., Malinchoc, M., Kremers, W., Therneau, T.M., Kosberg, C.L., D’Amico, G., Dickson, E.R., Kim, W.R.: A model to predict survival in patients with end-stage liver disease. Hepatology 33(2), 464–470 (2001)

    Article  Google Scholar 

  15. Karami, E.: Appropriateness of farmers adoption of irrigation methods: The application of the AHP model. Agricultural Systems 87(1), 101–119 (2006)

    Article  Google Scholar 

  16. Kim, Y., Chung, E.S., Jun, S.M., Kim, S.U.: Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS. Resources Conservation and Recycling 73, 23–32 (2013)

    Article  Google Scholar 

  17. Kuo, R.J., Wu, Y.H., Hsu, T.S.: Integration of fuzzy set theory and TOPSIS into HFMEA to improve outpatient service for elderly patients in Taiwan. Journal of the Chinese Medical Association 75(7), 341–348 (2012)

    Article  Google Scholar 

  18. La Scalia, G., et al.: Multi-criteria decision making support system for pancreatic islet transplantation. Expert Systems with Applications 38(4), 3091–3097 (2011)

    Article  MATH  Google Scholar 

  19. Lai, Y.J., Liu, T.Y., Hwang, C.L.: TOPSIS for MODM. European Journal of Operational 76(3), 486–500 (1994)

    Article  MATH  Google Scholar 

  20. Liberatore, M.J., Nydick, R.L.: The analytic hierarchy process in medical and health care decision making: A literature review. European Journal of Operational Research 189(1), 194–207 (2008)

    Article  MATH  Google Scholar 

  21. Lin, C.T., Tsai, M.C.: Location choice for direct foreign investment in new hospitals in China by using ANP and TOPSIS. Quality and Quantity 44(2), 375–390 (2010)

    Article  Google Scholar 

  22. Malinchoc, M., Kamath, P.S., Gordon, F.D., Peine, C.J., Rank, J., ter Borg, P.C.: A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31(4), 864–871 (2000)

    Article  Google Scholar 

  23. Milani, A.S., Shanian, A., Madoliat, R., Nemes, J.A.: The effect of normalization norms in multiple attribute decision making models: A case study in gear material selection. Structural and Multidisciplinary Optimization 29(4), 312–318 (2005)

    Article  Google Scholar 

  24. Padilla-Garrido, N., et al.: Multicriteria Decision Making in Health Care Using the Analytic Hierarchy Process and Microsoft Excel. Medical Decision Making (first published on May 14, 2014)

    Google Scholar 

  25. Piegat, A.: Fuzzy Modeling and Control. Springer, New York (2001)

    Book  MATH  Google Scholar 

  26. Piegat, A., Sałabun, W.: Nonlinearity of human multi-criteria in decision-making. Journal of Theoretical and Applied Computer Science 6(3), 36–49 (2012)

    Google Scholar 

  27. Piegat, A., Sałabun, W.: Identification of a Multicriteria Decision-Making Model Using the Characteristic Objects Method. Applied Computational Intelligence and Soft Computing (2014)

    Google Scholar 

  28. Sałabun, W.: The use of fuzzy logic to evaluate the nonlinearity of human multi-criteria used in decision making. Przeglad Elektrotechniczny (Electrical Review) 88(10b), 235–238 (2012)

    Google Scholar 

  29. Sałabun, W.: The mean error estimation of TOPSIS method using a fuzzy reference models. Journal of Theoretical and Applied Computer Science 7(3), 40–50 (2013)

    Google Scholar 

  30. Sałabun, W.: Application of the Fuzzy Multi-criteria Decision-Making Method to Identify Nonlinear Decision Models. International Journal of Computer Applications 89(15), 1–6 (2014)

    Article  Google Scholar 

  31. Sałabun, W.: Reduction in the number of comparisons required to create matrix of expert judgment in the COMET method. Management and Production Engineering Review 5(3), 62–69 (2014)

    Google Scholar 

  32. Sałabun, W.: The Characteristic Objects Method: A New Distance-based Approach to Multicriteria Decision-making Problems. Journal of Multi-Criteria Decision Analysis 21(3-4) (first published on July 4, 2014)

    Google Scholar 

  33. Saaty, T.L.: Decision making the analytic hierarchy and network processes (AHP/ANP). Journal of Systems Science and Systems Engineering 13(1), 1–35 (2004)

    Article  MathSciNet  Google Scholar 

  34. Saaty, T.L.: Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Mathematical and Computer Modelling 46(78), 860–891 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saaty, T.L.: Decision making the analytic hierarchy and network processes (AHP/ANP). International Journal Services Sciences 1(1), 83–98 (2008)

    Article  MathSciNet  Google Scholar 

  36. Saaty, T.L., Brandy, C.: The encyclicon, volume 2: a dictionary of complex decisions using the analytic network process. RWS Publications, Pittsburgh (2009)

    Google Scholar 

  37. Saaty, T.L., Shang, J.S.: An innovative orders-of-magnitude approach to AHP-based mutli-criteria decision making: Prioritizing divergent intangible humane acts. European Journal of Operational Research 214(3), 703–715 (2011)

    Article  MathSciNet  Google Scholar 

  38. Saaty, T.L., Tran, L.T.: On the invalidity of fuzzifying numerical judgments in the analytic hierarchy process. Mathematical and Computer Modelling 46(78), 962–975 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shih, H.S., Shyur, H.J., Lee, E.S.: An extension of TOPSIS for group decision making. Mathematical and Computer Modelling 45(7-8), 801–813 (2007)

    Article  MATH  Google Scholar 

  40. Sipahi, S., Timor, M.: The analytic hierarchy process and analytic network process: an overview of applications. Management Decision 48(5), 775–808 (2010)

    Article  Google Scholar 

  41. Soltanifar, M., Shahghobadi, S.: Survey on rank preservation and rank reversal in data envelopment analysis. Knowledge-Based Systems 60, 10–19 (2014)

    Article  Google Scholar 

  42. Sun, Y.F., Liang, Z.S., Shan, C.J., Viernstein, H., Unger, F.: Comprehensive evaluation of natural antioxidants and antioxidant potentials in Ziziphus jujuba Mill. var. spinosa (Bunge) Huex H. F. Chou fruits based on geographical origin by TOPSIS method. Food Chemistry 124(4), 1612–1619 (2011)

    Article  Google Scholar 

  43. Taleizadeh, A.A., Akhavan Niaki, S.T., Aryanezhad, M.B.: A hybrid method of Pareto, TOPSIS and genetic algorithm to optimize multi-product multiconstraint inventory control systems with random fuzzy replenishments. Mathematical and Computer Modeling 49(5-6), 1044–1057 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Y.M., Luoc, Y.: On rank reversal in decision analysis. Mathematical and Computer Modelling 49(5-6), 1221–1229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wiesner, R.H., McDiarmid, S.V., Kamath, P.S., Edwards, E.B., Malinchoc, M., Kremers, W.K., Krom, R.A., Kim, W.R.: MELD and PELD: application of survival models to liver allocation. Liver Transplantation 7(7), 567–580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Piegat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Piegat, A., Sałabun, W. (2015). Comparative Analysis of MCDM Methods for Assessing the Severity of Chronic Liver Disease. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics