Abstract
One of the important and still not fully addressed issues in evolving decision trees is the induction time, especially for large datasets. In this paper, the authors propose a parallel implementation for Global Decision Tree system that combines shared memory (OpenMP) and message passing (MPI) paradigms to improve the speed of evolutionary induction of decision tree. The proposed solution is based on the classical master-slave model. The population is evenly distributed to available nodes and cores, and the time consuming operations like fitness evaluation and genetic operators are executed in parallel on slaves. Only the selection is performed on the master node. Efficiency and scalability of the proposed implementation is validated experimentally on artificial datasets. It shows noticeable speedup and possibility to efficiently process large datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)
Barros, R.C., Basgalupp, M.P., Carvalho, A.C., Freitas, A.A.: A survey of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews 42(3), 291–312 (2012)
Chapman, B., Jost, B.G., Pas, R., van der Kuck, D.J.: Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press (2007)
Esposito, F., Malerba, D., Semeraro, G.: A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 476–491 (1997)
Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc. of IJCAI, pp. 1022–1027 (1993)
Freitas, A.: Data mining and knowledge discovery with evolutionary algorithms. Natural Computing Series. Springer (2002)
Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Computing. Addison-Wesley (2003)
Kalles, D., Papagelis, A.: Lossless fitness inheritance in genetic algorithms for decision trees. Soft Computing 14(9), 973–993 (2010)
Krętowski, M.: An evolutionary algorithm for oblique decision tree induction. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 432–437. Springer, Heidelberg (2004)
Kretowski, M., Grześ, M.: Global learning of decision trees by an evolutionary algorithm. In: Information Processing and Security Systems, pp. 401–410 (2005)
Krętowski, M., Grześ, M.: Evolutionary learning of linear trees with embedded feature selection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 400–409. Springer, Heidelberg (2006)
Kretowski, M., Grześ, M.: Evolutionary induction of mixed decision trees. International Journal of Data Warehousing and Mining 3(4), 68–82 (2007)
Krętowski, M., Popczyński, P.: Global induction of decision trees: from parallel implementation to distributed evolution. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 426–437. Springer, Heidelberg (2008)
Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer (1996)
Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming on clusters of multi-core SMP nodes. In: Proc. of the 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 427–436 (2009)
Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann Publishers (1997)
Rokach, L., Maimon, O.Z.: Data mining with decision trees: theory and application. Machine Perception Artificial Intelligence 69 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Czajkowski, M., Jurczuk, K., Kretowski, M. (2015). A Parallel Approach for Evolutionary Induced Decision Trees. MPI+OpenMP Implementation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-19324-3_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19323-6
Online ISBN: 978-3-319-19324-3
eBook Packages: Computer ScienceComputer Science (R0)