Abstract
In this paper we study the search abilities of binary one-point crossover (1ptc) operator in a genetic algorithm (GA). We show, that under certain conditions, GA is capable of using only a 1ptc operator to explore the entire search space, fighting premature convergence. Further, we prove that to restore the entire space from any two binary chromosomes, each of length n, at least 2n − 1 − 1 one-point crossover operations is needed. This number can serve as a measure for comparing the search speed of the different algorithms. Moreover, we propose an algorithm spanning the search space in the minimal number of crossovers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)
Choubey, N.S., Kharat, M.U.: Approaches for Handling Premature Convergence in CFG Induction Using GA. Advances in Intelligent and Soft Computing 96, 55–66 (2011)
Da Ronco, C.C., Benini, E.: GeDEA-II: A Simplex Crossover Based Evolutionary Algorithm Including the Genetic Diversity as Objective. Engineering Letters 21, 1 (2013)
Davis, L.: Adapting operator probabilities in genetic algorithms. In: International Conference on Genetic Algorithms 1989, pp. 61–69 (1989)
Davis, L.: Handbook of genetic algorithms. New York Van Nostrand Reinhold (1991)
De Jong, K.A., Spears, W.M.: A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence 5(1), 1–26 (1992)
Dietzfelbinger, M., Naudts, B., Van Hoyweghen, C., Wegener, I.: The analysis of a recombinative hill-climber on H-IFF. IEEE Transactions on Evolutionary Computation 7(5), 417–423 (2003)
Fischer, S., Wegener, I.: The one-dimensional Ising model: mutation versus recombination. Theoretical Computer Science 344(2-3), 208–225 (2005)
Fogel, D.B.: Evolving artificial intelligence. Doctoral dissertation University of California (1992)
Holland, J.H.: Adaptation in Natural and Artificial System. University of Michigan Press, Ann Arbor (1975)
Jones, T.: Crossover, macromutation and population-based search. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 73–80 (1995)
Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-boolean optimization. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO 2011), Dublin, Ireland, pp. 989–996 (2011)
Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local Optima Networks: A New Model of Combinatorial Fitness Landscapes. In: Recent Advances in the Theory and Application of Fitness Landscapes, pp. 233–262. Springer, Heidelberg (2014)
McGinley, B.: Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection. IEEE Transactions on Evolutionary Computation 15, 692–714 (2011)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer (1996)
Neumann, F., Theile, M.: How crossover speeds up evolutionary algorithms for the multicriteria all-pairs-shortest-path problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 667–676. Springer, Heidelberg (2010)
Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D.: On the effectiveness of crossover for migration in parallel evolutionary algorithms. In: Proceedings of the 13th ACM Conference on Genetic and Evolutionary Computation (GECCO 2011), Dublin, Ireland, pp. 1587–1594 (2011)
Oliveto, P., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for the vertex cover problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2008), Hong Kong, China, pp. 1563–1570 (2008)
Pandey, H.M., Chaudhary, A., Mehrotra, D.: A comparative review of approaches to prevent premature convergence in GA. Applied Soft Computing 24, 1047–1077 (2014)
Pliszka, Z., Unold, O.: Metric Properties of Populations in Artificial Immune Systems. In: Proceedings of the International Multiconference on Computer Science and Information Technology (AAIA 2010), Wisla, Poland, pp. 113–119 (2010)
Pliszka, Z., Unold, O.: How to predict future in a world of antibody-antigen chromosomes. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 91–96. IEEE (2011)
Pliszka, Z., Unold, O.: Efficient crossover and mutation operator in genetic algorithm. Elektronika (LII), 166–170 (2011) (in Polish)
Pliszka, Z., Unold, O.: On some properties of binary chromosomes and states of artificial immune systems. Int. J. of Data Analysis Techniques and Strategies 4(3), 277–291 (2012)
Pliszka, Z., Unold, O.: On multi-individual crossing over in evolutionary algorithms. Elektronika (LV) (9/2014), 140–141 (in Polish)
Prasanth, N., Kirti Vaishnavi, M., Sekar, K.: An algorithm to find all palindromic sequences in proteins. Journal of Biosciences 38(1), 173–177 (2013)
Richter, J.N., Wright, A., Paxton, J.: Ignoble trails-where crossover is provably harmful. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 92–101. Springer, Heidelberg (2008)
Qian, C., Yu, Y., Zhou, Z.-H.: An analysis on recombination in multi-objective evolutionary optimization. In: Proceedings of the 13th ACM Conference on Genetic and Evolutionary Computation (GECCO 2011), Dublin, Ireland, pp. 2051–2058 (2011)
Schweitzer, J.A., Martinsen, G.D., Whitham, T.G.: Cottonwood hybrids gain fitness traits of both parents: a mechanism for their long-term persistence? American Journal of Botany 89(6), 981–990 (2002)
Spears, W.M.: Crossover or mutation? In: FOGA, pp. 221–237 (1992)
Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Publishers, San Mateo (1989)
Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Phong, D.N.: On the roles of semantic locality of crossover in genetic programming. Information Sciences 235, 195–213 (2013)
Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Transactions on Evolutionary Computation 15(6), 783–797 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Pliszka, Z., Unold, O. (2015). On the Ability of the One-Point Crossover Operator to Search the Space in Genetic Algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-19324-3_33
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19323-6
Online ISBN: 978-3-319-19324-3
eBook Packages: Computer ScienceComputer Science (R0)