Skip to main content

Mathematical Characterization of Sophisticated Variants for Relevance Learning in Learning Matrix Quantization Based on Schatten-p-norms

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9119))

Included in the following conference series:

Abstract

In this paper we investigate possibilities of relevance learning in learning matrix quantization and discuss their mathematical properties. Learning matrix quantization can be seen as an extension of the learning vector quantization method, which is one of the most popular and intuitive prototype based vector quantization algorithms for classification learning. Whereas in the vector quantization approach vector data are processed, learning matrix quantization deals with matrix data as they occur in image processing of gray-scale images or in time-resolved spectral analysis. Here, we concentrate on the consideration of relevance learning when learning matrix quantization is based on the Schatten-p-norm as the data dissimilarity measure. For those matrix systems exist more relevance learning variants than for vector classification systems. We contemplate several approaches based on different matrix products as well as tensor operators. In particular, we discuss their mathematical properties related to the relevance learning task keeping in mind the stochastic gradient learning scheme for both, prototype as well as relevance learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, G., Grosenick, L., Taylor, J.: A generalized least squares matrix decomposition. Journal of the American Statistical Association, Theory & Methods 109(505), 145–159 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning 2(1), 1–127 (2009)

    Article  MathSciNet  Google Scholar 

  3. Biehl, M., Hammer, B., Schneider, P., Villmann, T.: Metric learning for prototype-based classification. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L. (eds.) Innovations in Neural Information Paradigms and Applications. SCI, vol. 247, pp. 183–199. Springer, Berlin (2009)

    Chapter  Google Scholar 

  4. Bojer, T., Hammer, B., Schunk, D., von Toschanowitz, K.T.: Relevance determination in learning vector quantization. In: Proceedings of the 9th European Symposium on Artificial Neural Networks, ESANN 2001, D-Facto, Evere, Belgium, pp. 271–276 (2001)

    Google Scholar 

  5. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley (2002)

    Google Scholar 

  6. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing (Proc. NIPS 2002), vol. 15, pp. 462–469. MIT Press, Cambridge (2003)

    Google Scholar 

  7. Domaschke, K., Kaden, M., Lange, M., Villmann, T.: Learning matrix quantization and variants of relevance learning. In: Verleysen, M. (ed.) Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015), Louvain-La-Neuve, Belgium, page submitted (2015), i6doc.com

  8. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  9. Goldhorn, K.-H., Heinz, H.-P., Kraus, M.: Moderne mathematische Methoden der Physik, vol. 1. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  10. Golub, G., Loan, C.V.: Matrix Computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences. John Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  11. Gu, Z., Shao, M., Li, L., Fu, Y.: Discriminative metric: Schatten norms vs. vector norm. In: Proc. of the 21st International Conference on Pattern Recognition (ICPR 2012), pp. 1213–1216 (2012)

    Google Scholar 

  12. Hammer, B., Strickert, M., Villmann, T.: Relevance LVQ versus SVM. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 592–597. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  MATH  Google Scholar 

  14. Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press (2013)

    Google Scholar 

  15. Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning - Review of recent developments in Learning Vector Quantization. Foundations of Computing and Decision Sciences 39(2), 79–105 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kaden, M., Riedel, M., Hermann, W., Villmann, T.: Border-sensitive learning in generalized learning vector quantization: an alternative to support vector machines. Soft Computing, page in press (2015)

    Google Scholar 

  17. Kohonen, T.: Learning vector quantization for pattern recognition. Report TKK-F-A601, Helsinki University of Technology, Espoo, Finland (1986)

    Google Scholar 

  18. Kohonen, T.: Learning Vector Quantization. Neural Networks 1(suppl. 1), 303 (1988)

    Google Scholar 

  19. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995) (2nd Extended Edition 1997)

    Google Scholar 

  20. Lange, M., Zühlke, D., Holz, O., Villmann, T.: Applications of l p -norms and their smooth approximations for gradient based learning vector quantization. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014), Louvain-La-Neuve, Belgium, pp. 271–276 (2014), i6doc.com

  21. Leung, A., Chau, F., Gao, J.: A review on applications of wavelet transform techniques in chemical analysis: 1989–1997. Chemometrics and Intelligent Laboratory Systems 43(1), 165–184 (1998)

    Article  Google Scholar 

  22. Liu, S., Trenkler, G.: Hadamard, Khatri-Rao, Kronecker and other matrix products. International Journal of Information and System Sciences 4(1), 160–177 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Osowski, S., Nghia, D.D.: Neural networks for classification of 2-d patterns. In: 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000, WCC 2000—ICSP 2000, vol. 3, pp. 1568–1571. IEEE, Piscataway (2000)

    Chapter  Google Scholar 

  24. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific (2006)

    Google Scholar 

  25. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference on Advances in Neural Information Processing Systems 8, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  26. Schatten, R.: A Theory of Cross-Spaces. Annals of Mathematics Studies, vol. 26. Princeton University Press (1950)

    Google Scholar 

  27. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  28. Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MathSciNet  Google Scholar 

  29. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 2nd edn. Brooks Publishing (1998)

    Google Scholar 

  30. Strickert, M., Seiffert, U., Sreenivasulu, N., Weschke, W., Villmann, T., Hammer, B.: Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis. Neurocomputing 69(6-7), 651–659 (2006) ISSN: 0925-2312

    Google Scholar 

  31. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MathSciNet  Google Scholar 

  32. Villmann, T., Haase, S., Kaden, M.: Kernelized vector quantization in gradient-descent learning. Neurocomputing 147, 83–95 (2015)

    Article  Google Scholar 

  33. Walter, J., Arnrich, B., Scheering, C.: Learning fine positioning of a robot manipulator based on gabor wavelets. In: Proceedings of the International Joint Conference on Neural Networks, vol. 5, pp. 137–142. Univ. of Bielefeld, IEEE, Piscataway, NJ (2000)

    Google Scholar 

  34. Yoshimura, H., Etoh, M., Kondo, K., Yokoya, N.: Gray-scale character recognition by gabor jets projection. In: Proceedings of the 15th International Conference on Pattern Recognition, ICPR 2000, vol. 2, pp. 335–338. IEEE Comput. Soc., Los Alamitos (2000)

    Chapter  Google Scholar 

  35. Zühlke, D., Schleif, F.-M., Geweniger, T., Haase, S., Villmann, T.: Learning vector quantization for heterogeneous structured data. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks (ESANN 2010), Evere, Belgium, pp. 271–276. d-side publications (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bohnsack, A., Domaschke, K., Kaden, M., Lange, M., Villmann, T. (2015). Mathematical Characterization of Sophisticated Variants for Relevance Learning in Learning Matrix Quantization Based on Schatten-p-norms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics