Abstract
In the current paper we mathematically try to support the decision concerning the treatment with hyperbaric oxygen for patients, suffering from necrotizing fasciitis. To accomplish the task, we involve the fuzzified model of a quasi-perceptron, which is our modification of the classical artificial simple neuron. By means of the fuzzification of input signals and output decision levels, we wish to distinguish between decisions “treatment without recommended hyperbaric oxygen” versus “treatment with hyperbaric oxygen”. The number of decision levels can be arbitrary in order to extend the decision scale.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Engelbrecht, A.P.: Computational Intelligence. Wiley & Sons Ltd., Chichester (2007)
Hasham, S., Matteucci, P., Stanley, P.R., Hant, N.B.: Necrotizing Fasciitis. BMJ 330(7495), 830–833 (2005)
Isaksson, M., Jalden, J., Murphy, M.J.: On Using an Adaptive Neural Network to Predict Lung Tumor Motion During Respiration for Radiotherapy Applications, American Association of Physicists in Medicine (2005), doi: 10.1118/1.2134958
Keller, J.M., Hunt, D.J., Douglas, J.: Incorporating Fuzzy Membership Functions into the Perceptron Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(6), 693–699 (1985)
Mathieu, D., Favory, R., Cesari, J., Wattel, F.: Necrotizing Soft Tissue Infections. In: Handbook on Hyperbaric Medicine, pp. 263–298. Springer Netherlands (2006)
Miller, S., Blott, B.H., Hames, T.K.: Review of Neural Network Applications in Medical Imaging and Signal Processing. Medical and Biological Engineering and Computing 30(5), 449–464 (1992)
Rakus-Andersson, E.: Fuzzy and Rough Techniques in Medical Diagnosis and Medication. STUDFUZZ, vol. 212. Springer, Heidelberg (2007)
Rakus-Andersson, E.: The Parametric s-functions and the Perceptron in Gastric Cancer Surgery Decision Making. In: Essam, D., Sarker, R. (eds.) Proceedings of WCCI 2012 World Congress, pp. 1852–1859.IEEE Computational Intelligence Society (2012)
Rakus-Andersson, E., Frey, J.: The Choquet Integral Applied to Ranking Therapies in Radiation Cystitis. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., et al. (eds.) Intelligent Systems’2014. AISC, vol. 323, pp. 443–452. Springer, Heidelberg (2015)
Rakus-Andersson, E.: Complex Control Models with Parametric Families of Fuzzy Constrains in Evaluation of Resort Management System. Journal of Advanced Computational Intelligence and Intelligent Informatics 18(3), 271–279 (2014)
Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington, DC (1961)
Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002)
Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008)
Yan, H., Jiang, Y., Zheng, J., Peng, C., Li, Q.: A Multilayer Perceptron-based Medical Decision Support System for Heart Disease Diagnosis. Expert Systems with Applications 30(2), 272–281 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Rakus-Andersson, E., Frey, J., Rutkowska, D. (2015). The Fuzzified Quasi-Perceptron in Decision Making Concerning Treatments in Necrotizing Fasciitis. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-19369-4_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19368-7
Online ISBN: 978-3-319-19369-4
eBook Packages: Computer ScienceComputer Science (R0)