Skip to main content

The Fuzzified Quasi-Perceptron in Decision Making Concerning Treatments in Necrotizing Fasciitis

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9120))

Included in the following conference series:

  • 1959 Accesses

Abstract

In the current paper we mathematically try to support the decision concerning the treatment with hyperbaric oxygen for patients, suffering from necrotizing fasciitis. To accomplish the task, we involve the fuzzified model of a quasi-perceptron, which is our modification of the classical artificial simple neuron. By means of the fuzzification of input signals and output decision levels, we wish to distinguish between decisions “treatment without recommended hyperbaric oxygen” versus “treatment with hyperbaric oxygen”. The number of decision levels can be arbitrary in order to extend the decision scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Engelbrecht, A.P.: Computational Intelligence. Wiley & Sons Ltd., Chichester (2007)

    Book  Google Scholar 

  2. Hasham, S., Matteucci, P., Stanley, P.R., Hant, N.B.: Necrotizing Fasciitis. BMJ 330(7495), 830–833 (2005)

    Article  Google Scholar 

  3. Isaksson, M., Jalden, J., Murphy, M.J.: On Using an Adaptive Neural Network to Predict Lung Tumor Motion During Respiration for Radiotherapy Applications, American Association of Physicists in Medicine (2005), doi: 10.1118/1.2134958

    Google Scholar 

  4. Keller, J.M., Hunt, D.J., Douglas, J.: Incorporating Fuzzy Membership Functions into the Perceptron Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(6), 693–699 (1985)

    Article  Google Scholar 

  5. Mathieu, D., Favory, R., Cesari, J., Wattel, F.: Necrotizing Soft Tissue Infections. In: Handbook on Hyperbaric Medicine, pp. 263–298. Springer Netherlands (2006)

    Google Scholar 

  6. Miller, S., Blott, B.H., Hames, T.K.: Review of Neural Network Applications in Medical Imaging and Signal Processing. Medical and Biological Engineering and Computing 30(5), 449–464 (1992)

    Article  Google Scholar 

  7. Rakus-Andersson, E.: Fuzzy and Rough Techniques in Medical Diagnosis and Medication. STUDFUZZ, vol. 212. Springer, Heidelberg (2007)

    Google Scholar 

  8. Rakus-Andersson, E.: The Parametric s-functions and the Perceptron in Gastric Cancer Surgery Decision Making. In: Essam, D., Sarker, R. (eds.) Proceedings of WCCI 2012 World Congress, pp. 1852–1859.IEEE Computational Intelligence Society (2012)

    Google Scholar 

  9. Rakus-Andersson, E., Frey, J.: The Choquet Integral Applied to Ranking Therapies in Radiation Cystitis. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., et al. (eds.) Intelligent Systems’2014. AISC, vol. 323, pp. 443–452. Springer, Heidelberg (2015)

    Google Scholar 

  10. Rakus-Andersson, E.: Complex Control Models with Parametric Families of Fuzzy Constrains in Evaluation of Resort Management System. Journal of Advanced Computational Intelligence and Intelligent Informatics 18(3), 271–279 (2014)

    Google Scholar 

  11. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington, DC (1961)

    Google Scholar 

  12. Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002)

    Book  Google Scholar 

  13. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008)

    Book  Google Scholar 

  14. Yan, H., Jiang, Y., Zheng, J., Peng, C., Li, Q.: A Multilayer Perceptron-based Medical Decision Support System for Heart Disease Diagnosis. Expert Systems with Applications 30(2), 272–281 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Rakus-Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rakus-Andersson, E., Frey, J., Rutkowska, D. (2015). The Fuzzified Quasi-Perceptron in Decision Making Concerning Treatments in Necrotizing Fasciitis. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19369-4_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19368-7

  • Online ISBN: 978-3-319-19369-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics