Abstract
In this paper we study the challenging problem of seafloor imagery taxonomic categorization. Our contribution is threefold. First, we demonstrate that this task can be elegantly translated into a Structured SVM learning framework. Second, we introduce a taxonomic loss function in the structured output classification objective during learning that is shown to improve the performance over other loss functions. And third, we show how the Structured SVM can naturally deal with the problem of learning from data imbalance by scaling the cost of misclassification during the optimization. We present a thorough experimental evaluation using the challenging and publicly available Tasmania Coral Point Count dataset, where our models drastically outperform the state-of-the-art-results reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Williams, S., Pizarro, O., Jakuba, M., Johnson, C., Barrett, N., Babcock, R., Kendrick, G., Steinberg, P., Heyward, A., Doherty, P., et al.: Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 19(1), 73–84 (2012)
Johnson-Roberson, M., Kumar, S., Williams, S.: Segmentation and classification of coral for oceanographic surveys: a semi-supervised machine learning approach. In: IEEE OCEANS, pp. 1–6 (2006)
Beijbom, O., Edmunds, P.J., Kline, D., Mitchell, B., Kriegman, D.: Automated annotation of coral reef survey images. In: IEEE CVPR, pp. 1170–1177 (2012)
Bewley, M., Douillard, B., Nourani-Vatani, N., Friedman, A., Pizarro, O., Williams, S.: Automated species detection: an experimental approach to kelp detection from sea-floor AUV images. In: ACRA (2012)
Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML, p. 104 (2004)
Bewley, M., Nourani-Vatani, N., Rao, D., Douillard, B., Pizarro, O., Williams, S.: Hierarchical classification in AUV imagery. In: Mejias, L., Corke, P., Roberts, J. (eds.) Field and Service Robotics. Springer, Switzerland (2015)
Smith, D., Dunbabin, M.: Automated counting of the northern pacific sea star in the derwent using shape recognition. In: DICTA, pp. 500–507, September 2007
Soriano, M., Marcos, S., Saloma, C., Quibilan, M., Alino, P.: Image classification of coral reef components from underwater color video. In: MTS/IEEE Conference and Exhibition OCEANS, pp. 1008–1013 (2001)
Cai, L., Hofmann, T.: Hierarchical document categorization with support vector machines. In: ACM CIKM, pp. 78–87 (2004)
Tuia, D., Muñoz-Marí, J., Kanevski, M., Camps-Valls, G.: Structured output SVM for remote sensing image classification. J. Signal Process. Syst. 65(3), 301–310 (2011)
Binder, A., Müller, K., Kawanabe, M.: On taxonomies for multi-class image categorization. Int. J. Comput. Vision (IJCV) 99, 281–301 (2012)
Joachims, T.: Multi-class support vector machine (2008). http://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
Wang, K., Zhou, S., Liew, S.: Building hierarchical classifiers using class proximity. In: International Conference on Very Large Data Bases (VLDB) (1999)
Veropoulos, K., Campbell, C., Cristianini, N.: Controlling the sensitivity of support vector machines. In: IJCAI, vol. 1999, pp. 55–60 (1999)
Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)
Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)
Acknowledgements
The authors acknowledge the Australian National Research Program (NERP) Marine Biodiversity Hub for the taxonomical labeling and the Australian Centre for Field Robotics for gathering the image data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nourani-Vatani, N., López-Sastre, R., Williams, S. (2015). Structured Output Prediction with Hierarchical Loss Functions for Seafloor Imagery Taxonomic Categorization. In: Paredes, R., Cardoso, J., Pardo, X. (eds) Pattern Recognition and Image Analysis. IbPRIA 2015. Lecture Notes in Computer Science(), vol 9117. Springer, Cham. https://doi.org/10.1007/978-3-319-19390-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-19390-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19389-2
Online ISBN: 978-3-319-19390-8
eBook Packages: Computer ScienceComputer Science (R0)