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Abstract. We study the application of minimum description length (MDL) in-
ference to estimate pattern recognition models for machine translation. MDL is
a theoretically-sound approach whose empirical results are however below those
of the state-of-the-art pipeline of training heuristics. We identify potential limita-
tions of current MDL procedures and provide a practical approach to overcome
them. Empirical results support the soundness of the proposed approach.

1 Introduction

Since their introduction, phrase-based (PB) models [1] have become the state-of-the-art
pattern recognition approach to machine translation. However, despite their empirical
success, their inference procedures still rely on a long decoupled pipeline of heuristics.
Stages in the pipeline cannot recover errors made in earlier stages which forces each
individual step to massively over-generate hypotheses. As a result, inferred phrasal lex-
icons [2] suffer of a huge degree of redundancy that penalizes the efficiency of PB
systems. A clear indicator of these deficiencies [3] is, for example, the fact that PB
models usually cannot generate the sentence pairs in which they have been trained in.

The minimum description length (MDL) principle [4] is a theoretically-sound alter-
native for PB inference. MDL, formally described in Section 3, is a general inference
procedure that “learns” by “finding regularities” in the data. It embodies a form of Oc-
cam’s Razor in which the best model for a given data is the one that provides a better
trade-off between goodness-of-fit on training data and “expressiveness” of the model.

We build on the work by Gonzélez-Rubio et al., [S] who described a practical MDL
inference approach for PB models. Such approach, described in Section 4, is based on
a greedy iterative procedure that generalizes an initial model that perfectly describes
training data. The generalization procedure reduces the complexity of the initial model
by segmenting sentences and merging common phrase pairs according to an MDL ob-
jective. Despite being theoretically-sound, these MDL PB models provide poor trans-
lation quality in comparison to state-of-the-art PB models. In Section 5, we study the
potential reasons behind such poor empirical performance and propose an extended
segmentation process to address this practical challenge.

Finally, the experiments in Section 6 compare the proposed approach against the
MDL PB estimation proposed in [5], and a state-of-the-art PB estimation [2]. Results
show that the proposed approach was able to boost the performance MDL PB models
while inferring significantly smaller phrasal lexicons than conventional PB models.



2 Related Work

Different authors have proposed formal approaches to infer PB models, e.g. [6,7]. In
contrast to these approaches, MDL inference is automatically protected against over-
fitting and, despite being closely related to Bayesian inference, it does not suffer from
its interpretation difficulties. In fact, MDL has a clear interpretation independently of
whether or not there exists some underlying “true” distribution.

In [8], an MDL objective is used to prune out a phrasal lexicon previously estimated.
In contrast, we use the MDL principle to directly estimate a PB model from a parallel
corpora. Regarding [5], we expand their ideas by proposing an extended segmentation
procedure that boosts the translation quality of MDL PB models.

Finally, our iterative segmentation process is similar to the recursive alignment
model (MAR) [9]. Our method, however, learns a complete phrasal lexicon, whereas
MAR only learns a word alignments as part of a larger pipeline.

3 The Minimum Description Length Principle

Given a set of data D, the objective of statistical inference is to obtain the most probable
model ® given the data. Such posterior probability can be decomposed as follows:
Pr(®) - Pr(D | @)
Pr(D)
According to information theory [10], the negative logarithm of the probability of an

event measures its description length. Therefore, searching for a MDL is equivalent to
searching for a good probability distribution; which allows us to re-write Equation (1):

DL(® | D) = — log Pr(® | D) x DL(®) + DL(D | ®) @)

Pr(® | D) = x Pr(®) - Pr(D | ®) (1)

where function DL(®) = — log Pr(®) measures the description length of model ®, and
DL(D|®)=—log Pr(D|®) denotes the description length of the data given the model.

Given these considerations, the goal of MDL inference [4] is to obtain the model F)
with a shorter description length for a given data set D:

~

® = argmin DL(® | D) = argmin DL(®) + DL(D | ®) 3)
) )

According to the MDL principle, the best model @ is thus the one that reaches an
optimal trade-off between model complexity and accuracy in the description of the data.
A more detailed description of the MDL principles and methods can be found in [11].

4 MDL Phrase-Based Models

PB models translate following a generative process with three steps [1]: 1) the source
sentence is divided into segments known as phrases, 2) each source phrase is translated
into a target phrase, and 3) target phrases are reordered to conform the final translation.
The main probability distribution is thus a phrase lexicon that describes the translation
probability between source and target language phrases. Next sections describe how to
estimate such phrase lexicons following an MDL objective [5].



Algorithm 1: Iterative inference procedure for MDL PB model estimation.
input  : @ (initial PB model)
output : P (generalized PB model)
auxiliary: collect(®) (Returns the set of possible segmentations of model ®)
ADL(s, ®) (Returns variation in DL when segmenting ® according to s)
sort(S) (Sorts segmentation set S by variation in DL)
commit(S, ®) (Apply segmentations in S to P, returns variation in DL)

1 repeat

2 S « collect(®);

3 candidates < [[;

4 fors € S do

5 A’ «+ ADL(s, ®);

6 if A’ < 0 then

7 | candidates .append({A’,s});
8 sort(candidates);

9 A <+ commit(candidates, ®);
10 until A > 0;

11 return P;

4.1 Description Length Functions

Let us start with the description length DL(D | ®) of a data set D given a model ®.
Following information theory [10], the natural approach to compute such description
length (in bits) is to use its lower bound given by DL(D | ®) = —log,(Pr(D | ®)).

The description length DL(®) can be measured as the number of bits required to
send model ® over a channel. This can be computed by serializing ® into a sequence
of symbols and then computing the length of the optimal encoding of such sequence.
To serialize a PB model, we require one symbol for each word in the source and target
vocabularies, another symbol to separate the source and target sides in a phrase pair, and
one additional symbol to distinguish between the different pairs in the phrase lexicon.

The example toy PB model {La|||The, casal||house, azul|||blue} will be serialized
as “La|Theecasalhouseeazul|blue”, where symbol e separates the phrase pairs, and |
separates the two sides of each pair. To compute the description length of the model,
we assume a uniform distribution so that each of K different symbols is encoded using
—log,(+) bits. In the example, we require 3 bits for each symbol', and 33 bits to en-
code the whole serialized PB model (11 symbols). This uniform code is obviously not
optimal. Still, using a common encoding, we can fairly compare different models.

4.2 Inference Procedure

The minimization in Equation (3) requires to a search for an optimal phrase lexicon.
Obviously, an exhaustive search over all possible sets of phrase pairs is unfeasible in
practice. We follow the ideas in [9] and implement the search as an iterative generaliza-
tion procedure. Let D = {f,,, e, }_, be a data set with N sentence pairs, The initial

! We have 8 different symbols: one symbol for each of the six words, plus e and |.



PB model would be a “sentence-based” model that we generalize by identifying parts
of the phrase pairs that could be used in isolation. From a probabilistic point of view,
this process moves some of the probability mass which is concentrated in the training
data out to other data still unseen. Consider this initial “sentence-based”” PB model:
La casa azul|||The blue house Esta casa azul|||This blue house
Esta casa verde|||This green house
it can be segmented to obtain a new PB model:

La|||The Estal||This casa azul|||blue house casa verde|||green house
which explains a new translation (La casa verde—The green house) and has a shorter
length (19 symbols vs. 23 original symbols). In [5], only segmentations that bisect the
phrases are considered. In Section 5 we propose an extended segmentation approach.

Algorithm 1 describes the MDL PB inference by iterative generalization. First, we
collect the potential segmentations of the current PB model (line 2). Then, we estimate
the variation in description length due to the application of each segmentation (lines 3
to 7). Finally, we sort the segmentations (line 8) and apply the one with largest length
reduction to obtain a new PB model (line 9). The algorithm stops when no reduction
is achievable [12, 5]. The number of segmentations under consideration (bisections) is
bounded by O(N-L-M), where N is the number of training sentences, and L and M
are the maximum length, in words, among the source and target sentences respectively.

4.3 Estimating the Impact of a Segmentation

The key component of Algorithm 1 is function ADL(s, ®) that evaluates the impact of a
candidate segmentation s on the description length of PB model ®. That is, ADL(s, ®)
computes the difference in description length between the current model ® and the
model @' that would result from committing to s:

ADL(s, ®) = DL(®') —DL(®) + DL(D | & )—DL(D | ®) 4)

The length difference between phrase lexicons (DL(®’) — DL(®)) is given by the
difference between the lengths of the phrase pairs added and removed. The difference

for the data is given by —log, (%';))). These probabilities can be computed by trans-
lating the training data. However, this is a prohibitively expensive approach. Instead,
we estimate the data description length in closed form.

The probability of a phrase pair {f, é} in a PB model is computed as the number of
occurrences of the pair divided by the number of occurrences of the source (or target)
phrase [1]. We thus estimate the probabilities in the segmented model &’ by count-
ing the occurrences of the replaced phrase pairs as occurrences of the new segmented
pairs. Let {fo, &} be a phrase pair bisected into {f, &, } and {f, &, }. The direct phrase
probabilities in @ will be identical to those in ® except that:

Pa (&0 |f0)=0

Np({f1,8})+Np({fo,0}) Np({f2,8})+Np({fo,é0})

Py (8 |f1)= Py (8 |f2)=

Nop(f1)+Np({fo,&}) Nop(f2)+Np({fo,&})

where Np(+) are counts in D. Inverse probabilities are computed similarly.
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Fig. 1. Histogram of lengths (source plus target words) for two PB models: a conventional MDL
model (left) and the same model after further segmenting long phrase pairs (right).

Finally, the variation in data description length is given by the ratio between the
estimated probability of the new pairs in @’ and that of the pairs replaced from ®:
Pr(D|®') Pgi(é|f1) Pa(d|f2) , Py (f1 | 1) - Pa(f2 | &)

~

PI‘(D | ‘I’) Pq,(éo | fg) P@(fo ‘ éO)

&)

where the two factors account for the direct and inverse phrase probabilities.

Note that we only consider the direct and inverse phrase probability distributions.
A similar approach can be followed to estimate the change in direct and inverse lexical
probabilities [2] but we left this extension for future developments.

5 Improving MDL Inference

MDL provides a simple and theoretically-sound approach to perform statistical infer-
ence. However, its application to natural language tasks, such as machine translation,
presents diverse practical challenges due to the intrinsic sparsity of human language.
Frequencies of words in natural language follow a power law [13]. Thus, many of
the words (or sequences of words) in a parallel corpus will appear only once. Since
MDL “learns” by “finding regularities”, this fact imposes a fundamental limitation to
the MDL generalization procedure. Consider the following example toy PB model:

La casa azul|||The blue house Este coche verde|||This green car
Tu bicicleta rosal||Your pink bike

Obviously, there is a clear correspondence between parts of the source and target
phrases, e.g. La<+>The or coche verde<+green car. However, no bisection provides a
reduction in description length. A consequence of this is that MDL tend to estimate
phrase lexicons with long phrase pairs, see Figure 1 (left). There, long phrase pairs
(more than 15 words?) account for almost half the pairs and 91% of the words in the
model. This is an important limitation since long phrase pairs generalize poorly.

To address this limitation, we extend the process in Section 4.2 with a subsequent
segmentation step to split the remaining long phrase pairs into more general units.
Specifically, we implement the state-of-the-art phrase extraction procedure [2]. Figure 1
(right) shows the phrase lengths resulting after such extended segmentation process.
Long phrase pairs have been replaced by shorter, more general bilingual phrases.

% 14 is the maximum phrase pair length usually considered by conventional PB systems.



News Commentary (Spa. / Eng.)

train tune test

#Sentences 51k 2k 1k
#Words 1.4M/1.2M 56k /50k 30k/26k
Vocabulary 47k/35k  5k/5k  8k/Tk

Table 1. Main figures of the NC corpus. M and k stand for millions and thousands of elements.

BLEU [%](1) TER[%](]) Size

State-of-the-art 31.4/30.7 48.0/47.2 2.2M
MDL: DL(®) 24.0/23.7 58.3/56.8  79.5k
+DL(D | ®) 24.0/23.8  57.5/56.0 79.1k

+ Further Segmentation ~ 29.1/28.1 50.6/49.4 1.4M

Table 2. Size (number of phrase pairs) of the inferred MDL PB models, and quality (tune/test) of
the generated translations. M and k stand for millions and thousands of elements respectively.

6 Experiments

We conducted experiments on the Spanish-to-English News Commentary (NC) trans-
lation task [14], see Table 1. All sentences were tokenized and lowercased.

We inferred MDL PB models with the training partitions as described in Sections 4
and 5. Then, we included them in a log-linear PB model [1] and generated translations
for the test partitions [2]. Since we only estimate the direct and inverse phrase prob-
abilities, see Section 4.3, we did not use lexical probabilities [2] in our experiments.
Translation quality was measured with BLEU [15] and TER [16]. BLEU measures the
accuracy of the automatic translations while TER measures their distance to a reference.

Table 2 shows size (number of phrase pairs) of the inferred MDL PB models, and
BLEU and TER scores of their translations. As a comparison, we display results for a
state-of-the-art PB system [2]. Results show that the proposed MDL inference obtained
much more concise models (less than one tenth the number of phrases) than the standard
inference pipeline. However, these smaller models were not able to deliver translations
of similar quality which is consistent with previous results reported in [5]. The extended
segmentation approach proposed in Section 5 dramatically improved the quality of the
generated translations at the cost of an increase in the size of the PB model.

Results obtained considering only the description length of the PB model (DL(®))
and considering the total description length (DL(®)+ DL(D | ®)) were virtually the
same. This fact, consistent with previous work [17], indicates that, for PB models, the
structure (set of phrase pairs) has the greater impact in translation quality, with only
scarce improvements due to the actual probabilities assigned to the phrase pairs.

We also measured the changes of the model and the translation quality during the in-
ference process. Figure 2 displays the number of phrase pairs (left) and the total descrip-
tion length (right) of the intermediate PB models generated during the MDL inference
procedure. The total description length is broken down into description length of the
model (DL(®), bottom) and description length of the data given the model (DL(D | ®),
top). We can observe that although the number of phrase pairs of the intermediate mod-
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Fig. 2. Changes in the PB model during MDL inference. Left plot displays the number of rules of
the model while the plot in the right displays its total description length broken down into model
description length (bottom) and data description length given the model (top).
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Fig. 3. Variation in test BLEU over iterations.

els increased over time, their description length actually went down. This indicates that
we are inferring more general models with a looser fit on the training data. Moreover,
the improvements in model description length made up for the loss in data description
length which indicates that we were indeed generalizing successfully.

Finally, Figure 3 displays the BLEU for the translations of the test partition over
time. Translation quality increased with the iterations reaching its maximum at the end
of the inference process. This again came to confirm the soundness of MDL inference.

7 Conclusions and Future Developments

We have studied a simple, unsupervised inference procedure for PB models based on
the MDL principle. We have also identified a potential practical limitation of MDL
and have proposed an approach to overcome it. Empirical results have shown that the
proposed approach was able to boost the quality of MDL PB models.

MDL provides a solid foundation from where to formalize PB inference. Future
developments may include (1) a more sophisticated segmentation procedure, (2) the
inclusion of lexical models in the MDL inference, and (3) the implementation of a
more parsimonious segmentation approach for the long remaining phrase pairs.
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