Skip to main content

Crater Detection in Multi-ring Basins of Mercury

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9117))

Included in the following conference series:

Abstract

This paper presents the automated detection of impact craters on large regions of Mercury. The processing sequence is composed by three main phases: the first consists on creating the image mosaics of the large areas of interest, the second by finding crater candidates on these mosaics, and finally by extracting a set of features that are used in the classification by SVM-Support Vector Machine in the third phase. The detections are performed on images acquired by the MDIS-NAC camera of MESSENGER probe covering three large basins on Mercury (Rachmaninoff, Mozart and Raditladi).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandeira, L., Saraiva, J., Pina, P.: Impact crater recognition on Mars based on a probability volume created by template matching. IEEE Trans. Geosci. Remote Sens. 45(12), 4008–4015 (2007)

    Article  Google Scholar 

  2. Bandeira, L.P.C., Saraiva, J., Pina, P.: Development of a methodology for automated crater detection on planetary images. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4477, pp. 193–200. Springer, Heidelberg (2007)

    Google Scholar 

  3. Bandeira, L., Ding, W., Stepinski, T.F.: Detection of sub-kilometer craters in high resolution planetary images using shape and texture features. Adv. Space Res. 49, 64–74 (2012)

    Article  Google Scholar 

  4. Blair, D.M., Freed, A.M., Byrne, P.K., Klimczak, C., Prockter, L.M., Ernst, C.M., Solomon, S.C., Melosh, H.J., Zuber, M.T.: The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury. J. Geophys. Res.-Planets 118, 47–58 (2013)

    Article  Google Scholar 

  5. Fasset, C.I., Kadish, S.J., Head, J.W., Solomon, S.C., Strom, R.G.: The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett. 38, L10202 (2011)

    Google Scholar 

  6. Herrick, R.R., Curran, L.L., Baer, A.T.: A Mariner/MESSENGER global catalog of mercurian craters. Icarus 215, 452–454 (2011)

    Article  Google Scholar 

  7. Jin, S., Zhang, T.: Automatic detection of impact craters on Mars using a modified adaboosting method. Planet. Space Sci. 99, 112–117 (2014)

    Article  Google Scholar 

  8. Martins, R., Pina, P., Marques, J.S., Silveira, M.: Crater detection by a boosting approach. IEEE Geosci. Remote Sens. Lett. 6, 127–131 (2009)

    Article  Google Scholar 

  9. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: ICCV VI, pp. 555–562 (1998)

    Google Scholar 

  10. Pedrosa, M.M., Pina, P., Machado, M., Bandeira, L., Silva, E.A.: Automated crater detection in the surface of Mercury in MDIS-NAC imagery. In: Lunar and Planetary Science Conference XLV, Abs. #2475, The Woodlands, TX (2014)

    Google Scholar 

  11. Pedrosa, M.M., Pina, P., Machado, M., Bandeira, L., Silva, E.A.: Automated crater detection in Rachmaninoff basin. In: European Planetary Science Conference, vol. 9, Abs. #546, Cascais, Portugal (2014)

    Google Scholar 

  12. Salamuniccar, G., Crater detection from Mercurian digital topography and comparison with Lunar and Martian craters. In: Lunar and Planetary Science Conference XLIV, Abs. #1866, The Woodlands, TX (2013)

    Google Scholar 

  13. Salamuniccar, G., Loncaric, S., Mazarico, E.: LU60645GT and MA132843GT catalogues of Lunar and Martian impact craters developed using a Crater shape-based interpolation crater detection algorithm for topography data. Planet. Space Sci. 60, 236–247 (2012)

    Article  Google Scholar 

  14. Salamuniccar, G., Loncaric, S., Pina, P., Bandeira, L., Saraiva, J.: MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets. Planet. Space Sci. 59, 111–131 (2011)

    Article  Google Scholar 

  15. Salamuniccar, G., Loncaric, S., Pina, P., Bandeira, L., Saraiva, J.: Integrated method for crater detection from topography and optical images and the new PH9224GT catalogue of Phobos impact craters. Adv. Space Res. 53, 1798–1809 (2014)

    Article  Google Scholar 

  16. Stepinski, T., Ding, W., Vilalta, R.: Detecting impact craters in planetary images using machine learning. In: Magdalena-Benedito, R., Martinez-Sober, M., Martinez-Martinez, J.M., Vila-Frances, J., Escandell-Monter, P. (eds.) Handbook of Intelligent Data Analysis of Real-Life: Theory and Practice 149–159. IGI Global, Hershey (2012)

    Google Scholar 

  17. Urbach, E.R., Stepinski, T.F.: Automatic detection of sub-km craters in high resolution planetary images. Planet. Space Sci. 57, 880–887 (2009)

    Article  Google Scholar 

  18. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Article  Google Scholar 

  19. Vijayan, S., Vani, K., Sanjeevi, S.: Crater detection, classification and contextual information extraction in lunar images using a novel algorithm. Icarus 226, 798–815 (2013)

    Article  Google Scholar 

  20. Yin, J., Li, H., Jia, X.: Crater detection based on Gist features. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 8, 23–29 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES – Grant: 9022/13-9), the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – Grant: 2014/08822-2), the Portuguese Science Foundation (FCT) through project ANIMAR (PTDC/CTE-SPA/110909/2009) and support for MM and LB (SFRH/BPD/79546/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam M. Pedrosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pedrosa, M.M., Pina, P., Machado, M., Bandeira, L., da Silva, E.A. (2015). Crater Detection in Multi-ring Basins of Mercury. In: Paredes, R., Cardoso, J., Pardo, X. (eds) Pattern Recognition and Image Analysis. IbPRIA 2015. Lecture Notes in Computer Science(), vol 9117. Springer, Cham. https://doi.org/10.1007/978-3-319-19390-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19390-8_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19389-2

  • Online ISBN: 978-3-319-19390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics