Skip to main content

Dimension Reduction of Hyperspectral Image with Rare Event Preserving

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9117))

Included in the following conference series:

Abstract

Rare events can potentially occur in many applications, particularly in hyperspectral image analysis. In this work, we focus on the rare event preservation rate of the different dimension reduction approaches. The objective is to test whether the rare event is preserved after dimension reduction, or not. This paper introduced an improvement on the principal component analysis method (PCA) with added constraint related based on the Chi2 density function to rare event preservation, it was shown that the performance of the new method is better on the reduced image tested on natural hyperspectral images. Then we must use the constrained dimension reduction method for the rare event to be preserved. Given these results, we believe that it is very important to integrate this constraint to all the other dimension reduction methods, and then compare the potential contributions of information losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L’ecuyer, P., Blanchet, J.H., Tuffin, B., Glynn, P.W.: Asymptotic robustness of estimators in rare-event simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS) 20(1), 6 (2010)

    Google Scholar 

  2. Collamore, J.: Rare event simulation for the ruin problem with investments via importance sampling and duality. Master thesis, University of Copenhagen (2010)

    Google Scholar 

  3. Dupuis, P.: Subsolutions for the design and analysis of rare event monte carlo. In: 7th International Workshop on Rare Events Simulation, Rennes (2008)

    Google Scholar 

  4. Cérou, F., Moral, P.D., Furon, T., Guyader, A.: Rare event simulation for a static distribution. In: 7th International Workshop on Rare Events Simulation, Rennes (2008)

    Google Scholar 

  5. Pastel, R., Morio, J., Piet-Lahanier, H.: Estimation of a rare event probability on complex system modeled with a kriging algorithm. In: 7th International Workshop on Rare Events Simulation, Rennes (2008)

    Google Scholar 

  6. Berikov, V., Lbov, G.: Bayesian model for rare events recognition with use of logical decision functions class. In: 7th International Workshop on Rare Events Simulation, Rennes (2008)

    Google Scholar 

  7. Overshee, P.V., Moor, B.D.: Subspace algorithms for the stochastic identification problem. Automatica 29, 649–660 (1993)

    Article  Google Scholar 

  8. Viberg, V.: Subspace-based methods for the identification of linear time-invariant systems. Automatica 31(12), 1835–1853 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nascimento, J.M.P., Dias, J.M.B.: Signal subspace identification in hyperspectral linear mixtures. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) Second Iberian Conference, IbPRIA 2005. LNCS, vol. 3523, pp. 207–214. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kuybeda, O., Malah, D., Barzohar, M.: Rank estimation and redundancy reduction of high-dimensional noisy signals with preservation of rare vectors. IEEE Trans. Signal Process. 55(12), 5579–5592 (2007)

    Article  MathSciNet  Google Scholar 

  12. Kuybeda, O., Malah, D., Barzohar, M.: Global unsupervised anomaly extraction and discrimination in hyperspectral images via maximum-orthogonal complement analysis. In: European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 2008

    Google Scholar 

  13. Chen, H.F., Jiang, G.F., Yoshihira, K.: Robust nonlinear dimensionality reduction for manifold learning. In: Proceeding of 18th International Conference on Pattern Recognition, pp. 447–450 (2006)

    Google Scholar 

  14. Marcus, M., Swerling, P.: Sequential detection in radar with multiple resolution elements. IEEE Trans. Inf. Theory 8(3), 237–245 (1962)

    Article  Google Scholar 

  15. Thottan, M., Ji, C.: Anomaly detection in ip networks. IEEE Trans. Signal Process. 51(8), 2191–2204 (2003)

    Article  Google Scholar 

  16. Lai, L., Poor, H.V., Xin, Y., Georgiadis, G.: Quickest search over multiple sequences. IEEE Trans. Inf. Theory 57(8), 5375–5386 (2011)

    Article  MathSciNet  Google Scholar 

  17. Khoder, J., Younes, R.: Proposal for preservation criteria to rare event. Application on multispectral / hyperspectral images. In: International Conference on Microelectronics. IEEE, Lebanon (2013)

    Google Scholar 

  18. He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: IEEE International Conference on Computer Vision, pp. 1208–1213. Vancouver, Canada (2005)

    Google Scholar 

  19. Teh, Y.W., Roweis, S.: Automatic alignment of local representations. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, pp. 841–848. MIT Press, Cambridge (2003)

    Google Scholar 

  20. Wang, Z., Sheikh, H.R., Bovik, A.: Objective video quality assessment. In: Furht, B., Marques, O. (eds.) The Handbook of Video Databases: Design and Applications. CRC Press, New York (2003)

    Google Scholar 

  21. Khoder, J.: Nouvel algorithme pour la réduction de la dimensionnalité en imagerie hyperspectrale. Ph.D. thesis. Versailles University (2013)

    Google Scholar 

  22. Khoder, J., Younes, R.: Dimensionality reduction on hyperspectral images: a comparative review based on artificial datas. In: 4th International Congress on Image and Signal Processing (CISP-IEEE), vol. 4, pp. 1875–1883, October 2011

    Google Scholar 

  23. Singh, A., Pratt, M.A., Chu, C-H.H, et al.: Visual saliency approach to anomaly detection in an image ensemble. In : SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, pp. 87500T-87500T-7 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihan Khoder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khoder, J., Younes, R., Obeid, H., Khalil, M. (2015). Dimension Reduction of Hyperspectral Image with Rare Event Preserving. In: Paredes, R., Cardoso, J., Pardo, X. (eds) Pattern Recognition and Image Analysis. IbPRIA 2015. Lecture Notes in Computer Science(), vol 9117. Springer, Cham. https://doi.org/10.1007/978-3-319-19390-8_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19390-8_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19389-2

  • Online ISBN: 978-3-319-19390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics