Skip to main content

Energy Aware Object Localization in Wireless Sensor Network Based on Wi-Fi Fingerprinting

  • Conference paper
  • First Online:
Computer Networks (CN 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 522))

Included in the following conference series:

Abstract

The usage of GPS systems for indoor localization is limited, therefore multiple indirect localization techniques were proposed over the years. One of them is a localization method based on Wi-Fi (802.11) access point (AP) signal strength (RSSI) measurement. In this method, a RSSI map is constructed via Localization Fingerprinting (LF), which allows localizing object on the basis of a pattern similarity. The drawback of LF method is the need to create the RSSI map that is used as a training dataset. Therefore, in this study a Wireless Sensor Network (WSN) is used for this task. The introduced in this paper energy aware localization method allows to acquire the actual RSSI map or broadcast a localization signal, if there is not sufficient information to perform the localization by using nearby APs. To localize objects in a given cell, various classifiers were used and their localization accuracy was analyzed. Simulations were performed to compare the introduced solution with a state-of-the-art approach. The experimental results show that the proposed energy aware method extends the lifetime of WSN and improves the localization accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man, Cybern. Part C 37(6), 1067–1080 (2007)

    Google Scholar 

  2. Chen, L., Li, B., Zhao, K., Rizos, C., Zheng, Z.: An indoor geolocation system for wireless LANs. In: Parallel Processing Workshops, pp. 29–34 (2003)

    Google Scholar 

  3. Stoleru, R., He, T., Stankovic, J., Luebke, D.: A high-accuracy, low-cost localization system for wireless sensor networks. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 13–26. ACM Press, New York (2005)

    Google Scholar 

  4. Stoleru, R., Vicaire, P., Hey, T., Stankovic, J.: StarDust: a flexible architec-ture for passive localization in wireless sensor networks. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 57–70. ACM Press, New York (2006)

    Google Scholar 

  5. Chen, W., Hou, J., Sha, L.: Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Trans. Mob. Comput. 3(3), 258–271 (2004)

    Google Scholar 

  6. Wang, J., Zha, H., Cipolla, R.: Coarse-to-fine vision-based localization by indexing scale-invariant features. IEEE Trans. Syst. Man, Cybern. Part B 36, 413–421 (2006)

    Google Scholar 

  7. Farjow, W., Chehri, A., Hussein, M., Fernando, X.: Support vector machines for indoor sensor localization. In: Wireless Communications and Networking Conference IEEE (2011). doi:10.1109/WCNC.2011.5779231

  8. Kwon, J., Dundar, B., Varaiya, P.: Hybrid algorithm for indoor positioning using wireless LAN. In: Vehicular Technology Conference, pp. 4625–4629 (2004)

    Google Scholar 

  9. Prasithsangaree, P., Krishnamurthy, P., Chrysanthis, P.: On indoor position location with wireless LANs. In: Personal, Indoor and Mobile Radio Communications,vol. 2, pp. 720–724 (2002)

    Google Scholar 

  10. Tatatr, Y., Yildrim, G.: An alternative indoor localization technique based on fingerprint in wireless sensor networks. Int. J. Adv. Res. Comput. Commun. Eng. 2(2), 1288–1294 (2013)

    Google Scholar 

  11. Figuera, C., Rojo-Álvarez, J., Wilby, M., Mora-Jiménez, M., Caamaño, A.: Advanced support vector machines for 802.11 indoor location. Sig. Process. 92(9), 2126–2136 (2012)

    Google Scholar 

  12. Płaczek, B.: Uncertainty-dependent data collection in vehicular sensor networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 430–439. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Zhou, H., Luo, D., Gao, Y., Zuo, D.: Modeling of node energycon-sumption for wireless sensor networks. Wirel. Sens. Netw. 3, 18–23 (2011).doi:10.4236/wsn.2011.31003

  14. Chan, E., Baciu, G., Mak, S.: Using wi-fi signal strength to localize in wireless sensor networks. In: 2009 International Conference on Communications and Mobile Computing, vol. 1, pp. 538–542 (2009)

    Google Scholar 

  15. Bernas, M., Placzek, B., Porwik, P., Pamula, T.: Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction. In: IET Intelligent Transport Systems, pp. 1–11 (2014). doi:10.1049/iet-its.2013.0164

  16. Berthold, M., Diamond, J.: Constructive training of probabilistic neural networks. Neuro-computing 19(1–3), 167–183 (1998)

    Google Scholar 

  17. Wang, C., Chen, W., Sun, Y.: Sensor network localization using kernel spectral regression. In: Communication and Wireless Computing, (2009). doi:10.1002/wcm.820

  18. Rreiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  19. Langley, J.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  20. Kudlacik, P., Porwik, P.: A new approach to signature recognition using the fuzzy method. Pattern Anal. Appl. 17(3), 451–463 (2014)

    MathSciNet  Google Scholar 

  21. Płaczek, B., Bernas, M.: Optimizing data collection for object tracking in wireless sensor networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 485–494. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Placzek, B., Bernas, M.: Uncertainty-based information extraction in wireless sensor networks for control applications. Ad Hoc Netw. 14C, 106–117 (2014)

    Google Scholar 

  23. Bernas, M.: WSN power conservation using mobile sink for road traffic monitoring. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 476–484. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Francesco, D., Das, K., Anastasi, G.: Data collection in wireless sensor networks with mobile elements: a survey. ACM Trans. Sens. Netw. 8(1), 7:1–7:31 (2012)

    Google Scholar 

  25. Bernas, M.: VANETs as a part of weather warning systems. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 459–466. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Bernas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bernas, M., Płaczek, B. (2015). Energy Aware Object Localization in Wireless Sensor Network Based on Wi-Fi Fingerprinting. In: Gaj, P., Kwiecień, A., Stera, P. (eds) Computer Networks. CN 2015. Communications in Computer and Information Science, vol 522. Springer, Cham. https://doi.org/10.1007/978-3-319-19419-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19419-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19418-9

  • Online ISBN: 978-3-319-19419-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics