Skip to main content

Veto Values Within MAUT for Group Decision Making on the basis of Dominance Measuring Methods with Fuzzy Weights

  • Conference paper
  • First Online:
Outlooks and Insights on Group Decision and Negotiation (GDN 2015)

Abstract

In this paper we extend the additive multi-attribute utility model to incorporate the concept of veto in a group decision-making context. Moreover, trapezoidal fuzzy numbers are used to represent the relative importance of criteria for each DM, and uncertainty about the alternative performances is considered by means of intervals. Although all DMs are allowed to provide veto values, the corresponding vetoes are effective for only the most important DMs. They are used to define veto ranges. Veto values corresponding to the other less important DMs are partially taken into account, leading to the construction of adjust ranges. Veto and an adjust function are then incorporated into the additive model, and a fuzzy dominance matrix is computed. A dominance measuring method is then used to derive a ranking of alternatives for each DM, which are then aggregated to account for the relative importance of DMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrow, K.J., Raynaud, H.: Social Choice and Multicriterion Decision Making. MIT Press, Cambridge (1986)

    Google Scholar 

  2. Moulin, H.: The proportional veto principle. Rev. Econ. Stud. 48, 407–416 (1981)

    Article  Google Scholar 

  3. Roy, B., Slowinski, R.: Handling effects of reinforced preference and counter-veto in credibility of outranking. Eur. J. Oper. Res. 188, 185–190 (2008)

    Article  Google Scholar 

  4. Nowak, M.: Preference and veto threshold in multicriteria analysis based on stochastic dominance. Eur. J. Oper. Res. 158, 339–350 (2004)

    Article  Google Scholar 

  5. Munda, G.: A conflict analysis approach for illuminating distributional issues in sustainability. Eur. J. Oper. Res. 194, 307–322 (2009)

    Article  Google Scholar 

  6. Bana e Costa, C.A., Corra, E., De Corte, J.M., Vansnick, J.C.: Faciliting bid evalutation in public call for tenders: a social-technical approach. Omega 30, 227–242 (2002)

    Article  Google Scholar 

  7. Marichal, J.L.: Tolerant or intolerant character of interacting criteria in aggregation by the choquet integral. Eur. J. Oper. Res. 155, 771–791 (2004)

    Article  Google Scholar 

  8. Liginlala, D., Ow, T.T.: Modeling attitude to risk in human decision processes: an application of fuzzy measures. Fuzzy Sets Syst. 157, 3040–3054 (2006)

    Article  Google Scholar 

  9. Daher, S.S.D., de Almeida, A.T.: The use of ranking veto concept to mitigate the compensatory effects of additive aggregation in group decisions on a water utility automation investment. Group Decis. Negot. 21, 185–204 (2012)

    Article  Google Scholar 

  10. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge (1982)

    Google Scholar 

  11. Stewart, T.: Robustness of additive value function method in MCDM. J. Multicriteria Decis. Anal. 5, 301–309 (1996)

    Article  Google Scholar 

  12. Yue, Z.: A method for group decision-making based on determining weights of decision makers using TOPSIS. Appl. Math. Model. 35, 1926–1936 (2011)

    Article  Google Scholar 

  13. Yoon, K.: System selection by multiple attribute decision making. PhD thesis. Kansas State University Press, Manhattan (1980)

    Google Scholar 

  14. Hwang, C.L., Yoon, K.: Multiple Attribute Decision-making: Methods and Applications. Springer, Berlin (1981)

    Book  Google Scholar 

  15. Dokas, I.M., Nordlander, T.E., Wallace, R.J.: Fuzzy fault tree representation and maintenance based on frames and constraint technologies: a case study. In: Workshop on Knowledge Capture and Constraint Programming. Whistler, British Columbia, Canada (2007)

    Google Scholar 

  16. Vicente, E., Mateos, A., Jiménez-Martín, A.: Risk analysis in information systems: a fuzzification of the MAGERIT methodology. Knowl.-Based Syst. 66, 1–12 (2014)

    Article  Google Scholar 

  17. Vicente, E., Jiménez, A., Mateos, A.: An interactive method of fuzzy probability elicitation in risk analysis. In: Intelligent Systems and Decision Making for Risk Analysis and Crisis Response, pp. 223–228. CRC Press, New York (2013)

    Google Scholar 

  18. Jiménez, A., Mateos, A., Sabio, P.: Dominance intensity measure within Fuzzy weight oriented MAUT: an application. Omega 41, 397–405 (2013)

    Article  Google Scholar 

  19. Aguayo, E., Mateos, A., Jiménez-Martín, A.: A new dominance intensity method to deal with ordinal information about a DM’s preferences within MAVT. Knowl.-Based Syst. 69, 159–169 (2014)

    Article  Google Scholar 

  20. Mateos, A., Jiménez-Martín, A., Aguayo, E., Sabio, P.: Dominance intensity measuring methods in MCDM with ordinal relations regarding weights. Knowl.-Based Syst. 70, 26–32 (2014)

    Article  Google Scholar 

  21. Tran, L., Duckstein, L.: Comparison of fuzzy numbers using a Fuzzy number measure. Fuzzy Sets Syst. 130, 331–341 (2002)

    Article  Google Scholar 

  22. Lin, S.: Rank aggregation methods. WIREs Comput. Stat. 2, 555–570 (2010)

    Article  Google Scholar 

  23. Green, P.: Research for Marketing Decisions. Prentice-Hall, New Jersey (1978)

    Google Scholar 

  24. Borda, J.: Memoire Sur les Elections au Scrutin. Histoire de l’Academie des Sciences, Paris (1981)

    Google Scholar 

  25. DeConde, R., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., Etzioni, R.: Combining results of microarray experiments: a rank aggregation approach. Stat. Appl. Genet. Mol. Biol. 5, 5–15 (2006)

    Google Scholar 

  26. Kemeny, J.: Mathematics without numbers. Daedalus 88, 577–591 (1959)

    Google Scholar 

  27. Lin, S., Ding, J.: Integration of ranked lists via cross entropy monte carlo with applications to mRNA and microRNA studies. Biometrics 65, 9–18 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Jiménez-Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sabio, P., Jiménez-Martín, A., Mateos, A. (2015). Veto Values Within MAUT for Group Decision Making on the basis of Dominance Measuring Methods with Fuzzy Weights. In: Kamiński, B., Kersten, G., Szapiro, T. (eds) Outlooks and Insights on Group Decision and Negotiation. GDN 2015. Lecture Notes in Business Information Processing, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-19515-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19515-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19514-8

  • Online ISBN: 978-3-319-19515-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics