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Abstract. This paper briefly discusses the state-of-the-art of e-noses and classi-
fiers used in analyzing the response data from E-Nose systems and presents an 
idea about how to face off this kind of problems using ensembles of classifiers.  
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1 Introduction 

An E-Nose is an instrument used for the automated detection and classification of 
odors, vapors and gases, thus mimicking the human olfactory apparatus [3]. It is used 
in the perfumes, food, beverages and biomedical industries to classify various com-
plex odors. A general E-Nose system consists of a sample handling, a detection and a 
data processing system. After considering the samples and methods specifications for 
the sample handling, the detection system consists of an array of sensors and then the 
pattern recognition techniques for analyzing the response data generated by the detec-
tors [5]. In this paper, we revise the state-of-the-art about e-noses and the classifiers 
used in the existing e-noses. Then we obtain some preliminary conclusions and pro-
pose an ensemble of classifiers as an innovative technique for an e-nose system de-
veloped in Japan. 

2 Related Work 

Most of the applications for e-noses concentrate on four major areas; food, medical 
diagnosis, environmental monitoring and bio-process control [7]. Rodriguez et al. [6] 
used an A-Nose to discriminate Colombian coffee into simple and complex odors 
using PCA and MLP BPNN with LOO cross validation method. A portable e-nose 
Pen2  identified the quality grade of green tea by extracting feature vectors using PCA 
and validating using  LDA and BPNN [10]. It is possible to directly classify the sen-
sor data using BPNN only; using a TGS 800 series Smart E-Nose for controlling cof-
fee quality [8] but it leads to overfitting. It is also possible to extract features to reduce 
data dimension using PCA only without validating or using any supervised classifiers 
such as the work by Berna et al. [2], in comparing 2 e-noses for detecting changes in 
tomato aroma profiles of two different cultivars and a quartz crystal microbalance 
based e-nose for detection of bacterial contaminated milk [1]. However, Dutta et al. 
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[4] combined 3D-scatter plot, Fuzzy C Means, SOM for extracting features, and used 
MLP, PNN and RBF for classifying the 6 eye bacteria data. This proposal enhanced 
the performance of Cyranose 320 e-nose, but it can be very difficult to implement and 
incorporates a high degree of complexity. Chen et al. [3] employed a MDC with a 
combination of KNN, LDA and PNN, which provided an increased overall classifica-
tion accuracy compared to the use of any single individual classifier. 

3 Conclusions and Research Goal 

E-Noses mostly use feature extraction methods followed by a pattern recognition 
method. The typical feature extraction linear methods used are PCA, LDA and ICA 
[9]. The task of a classifier is to use the feature vector provided by the feature extrac-
tor to assign the object it represents to a category [7]. Currently, the existing E-Nose 
systems employ a feature extraction method followed by a single classifier for analyz-
ing the response data except for two cases where the feature extraction methods have 
been combined and an appropriate classifier that performs specifically better with the 
combination has been suggested in [3][4]. The methods proposed are also specific to 
the kind of odor that is being detected. Our aim is to propose an ensemble of classifi-
ers to analyze the response data, trying to take advantage of the combined responses 
of classifiers and focusing on a particular e-nose system created at the OIT in Japan. 
More specifically, we propose the use of MLP and SVM to explore the combination 
of different classifiers in an effective manner. 
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