Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 372))

  • 913 Accesses

Abstract

This paper briefly discusses the state-of-the-art of e-noses and classifiers used in analyzing the response data from E-Nose systems and presents an idea about how to face off this kind of problems using ensembles of classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, Z., O’Hare, W.T., Theaker, B.J.: Detection of Bacterial Contaminated Milk by means of a Quartz crystal Microbalance Based Electronic Nose. Journal of Thermal Analysis and Calorimetry 71, 155–161 (2003)

    Article  Google Scholar 

  2. Berna, A.Z., Lammertyn, J., Saevels, S., Natale, C.D., Nicolai, B.M.: Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sensors and Actuators B 97, 324–333 (2004)

    Article  Google Scholar 

  3. Chen, H., Goubran, R.A., Mussivand, T.: Improving the Classification Accuracy in Electronic Noses Using Multi-Dimensional Combining (MDC). IEEE (2004)

    Google Scholar 

  4. Dutta, R., Hines, E.L., Gardner, J.W., Boilot, P.: Bacteria classification using Cyranose 320 electronic nose. BioMedical Engineering Online (2002)

    Google Scholar 

  5. Peris, M., Escuder-Gilabert, L.: A 21st century technique for food control: Electronic noses. Elsevier (2009)

    Google Scholar 

  6. Rodriguez, J., Duran, C., Reyes, A.: Electronic Nose for Quality Control of Colombian Coffee through the Detection of Defects in “Cup Tests”. Sensors (2010)

    Google Scholar 

  7. Scott, S.M., James, D., Ali, Z.: Data Analysis for electronic nose systems. Springer (2006)

    Google Scholar 

  8. Shilbayeh, N.F., Iskandarani, M.Z.: Quality Control of Coffee Using an Electronic Nose System. American Journal of Applied Sciences 1(2), 129–135 (2004)

    Article  Google Scholar 

  9. Stone, J.V.: Independent component analysis: an introduction. Trends Cogn. Sci. 6, 59 (2002)

    Article  Google Scholar 

  10. Yu, H., Wang, J., Xiao, H., Liu, M.: Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sensors and Actuators B 140, 378–382 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechen Pelki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pelki, D., Bajo, J., Omatu, S. (2015). Intelligent Classifier for E-Nose Systems. In: Bajo, J., et al. Trends in Practical Applications of Agents, Multi-Agent Systems and Sustainability. Advances in Intelligent Systems and Computing, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-319-19629-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19629-9_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19628-2

  • Online ISBN: 978-3-319-19629-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics