Skip to main content

Fuzzy Modifiers at the Core of Interpretable Fuzzy Systems

  • Chapter
  • First Online:
Fifty Years of Fuzzy Logic and its Applications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 326))

Abstract

Fuzzy modifiers associated with linguistic hedges have been introduced by L.A. Zadeh at the early stage of approximate reasoning and they are fundamental elements in the management of interpretable systems. They can be regarded as a solution to the construction of fuzzy sets slightly different from original ones. We first present the main definitions of modifiers based on mathematical transformations of membership functions, mainly focusing on so-called post-modifiers and pre-modifiers, as well as definitions based on fuzzy relations. We show that measures of similarity are useful to evaluate the proximity between the original fuzzy sets and their modified form and we point out links between modifiers and similarities. We then propose an overview of application domains which can take advantage of fuzzy modifiers, for instance analogy-based reasoning, rule-based systems, gradual systems, databases, machine learning, image processing, and description logic. It can be observed that fuzzy modifiers are either constructed in a prior way by means of formal definitions or automatically learnt or tuned, for instance in hybrid systems involving genetic algorithm-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rissland, E.: Ai and similarity. IEEE Intell. Syst. 21, 39–49 (2006)

    Article  Google Scholar 

  2. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man. Cybern. 3:28–44 (1973)

    Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—part I. Inf. Sci. 8, 199–249 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—part II. Inf. Sci. 8, 301–357 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—part III. Inf. Sci. 9, 43–80 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedges. Cybern. Syst. 2(3), 4–34 (1972)

    MathSciNet  Google Scholar 

  7. Hersh, H.M., Caramazza, A.: A fuzzy set approach to modifiers and vagueness in natural language. J. Exp. Psychol. 105, 254–276 (1976)

    Article  Google Scholar 

  8. Lakoff, G.: Hedges: a study in meaning criteria and the logic of fuzzy concepts. J. Philos. Logic 2, 458508 (1973)

    Article  MathSciNet  Google Scholar 

  9. Macvicar-Whelm, P.J.: Fuzzy sets, the concept of height and the edge very. IEEE Trans. Syst. Man Cybern. 8(6), 507–512 (1978)

    Article  Google Scholar 

  10. Baldwin, J.F.: Fuzzy logic and fuzzy reasoning. Int. J. Man-Mach. Stud. 11(4), 465–480 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eshragh, F., Mamdani, E.H.: A general approach to linguistic approximation. Int. J. Man-Mach. Stud. 11(4), 501–519 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wenstop, F.: Deductive verbal models of organizations. Int. J. Man-Mach. Stud. 8(3), 293–311 (1976)

    Article  MATH  Google Scholar 

  13. Zadeh, L.A.: PRUF-a meaning representation language for natural languages. Int. J. Man-Mach. Stud. 10(4), 395–460 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ho, N.C., Nam, H.V.: An algebraic approach to linguistic hedges in zadehs fuzzy logic. Fuzzy Sets Syst. 129, 229–254 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ying, M., Bouchon-Meunier, B.: Quantifiers, modifiers and qualifier in fuzzy logic. J. Appl. Non-class. Logics 7(3), 335–342 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ying, M., Bouchon-Meunier, B.: Approximate reasoning with linguistic modifiers. Int. J. Intell. Syst. 13, 403–418 (1998)

    Article  Google Scholar 

  17. Ostaszewski, K., Karwowski, W.: Linguistic hedges and fuzzy normalization operator. In: Proceedings of the Third Congress of the International Fuzzy Systems Association, pp. 528–531, Seattle, Washington, USA (1989)

    Google Scholar 

  18. Burillo, P., Fuentes-González, R., González, L., Marin, A.: On contrast intensification operators and fuzzy equality relations. Mathw. Soft Comput. 7, 15–27 (2000)

    MATH  Google Scholar 

  19. Bloch, I. (ed.): Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches. Wiley-ISTE, New York (2007)

    Google Scholar 

  20. De Cock, M., Kerre, E.E.: A context-based approach to linguistic hedges. Int. J. Appl. Math. Comput. Sci. 12, 371–382 (2002)

    MATH  Google Scholar 

  21. Bouchon, B.: Stability of linguistic modifiers compatible with a fuzzy logic. In: Uncertainty in Intelligent Systems. Lecture Notes in Computer Science, pp. 63–70. Springer, Berlin (1988)

    Google Scholar 

  22. Bouchon-Meunier, B.: Fuzzy logic and knowledge representation using linguistic modifiers. In: Kacprzyk, J., Zadeh, L.A. (eds.) Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)

    Google Scholar 

  23. Bouchon, B., Yao, J.: Linguistic modifiers and gradual membership to a category. Int.l J. Intell. Syst. 7(1), 25–36 (1992)

    Article  MATH  Google Scholar 

  24. Bouchon-Meunier, B., Marsala, C.: Linguistic modifiers and measures of similarity or resemblance. In: Proceedings of the 9th IFSA World Congress, pp. 2195–2199, Vancouver, Canada (2001)

    Google Scholar 

  25. De Cock, M., Kerre, E.E.: Fuzzy modifiers based on fuzzy relations. Inf. Sci. 160(1–4), 173–199 (2004)

    Article  MATH  Google Scholar 

  26. Bodenhofer, U., De Cock, M., Kerre, E.E.: Openings and closures of fuzzy preorderings: theoretical basics and applications to fuzzy rule-based systems. Int. J. Gen. Syst. 32(4), 343–360 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bouchon-Meunier, B.: Interpretable decisions by means of similarities and modifiers. In: IEEE International Conference on Fuzzy Systems, Jeju, South Korea (2009)

    Google Scholar 

  28. Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy Sets Syst. 84(2), 143–153 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Godo, L., Lopez de Mantaras, R., Sierra, C., Verdaguer, A.: MILORD: the architecture and the management of linguistically expressed uncertainty. Int. J. Intell. Syst. 4(4), 471–501 (1989)

    Article  MATH  Google Scholar 

  30. Liu, B.-D., Chen, C.-Y., Tsao, J.-Y.: Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms. IEEE Trans. Syst. Man Cybern. B Cybern. 31(1), 32–53 (2001)

    Article  Google Scholar 

  31. Casillas, J., Cordon, O., Herrera, F., Magdalena, L.: Accuracy improvements to find the balance interpretability-accuracy in linguistic fuzzy modeling: an overview. In: Casillas, J., Cordon, O.. Herrera Triguero, F., Magdalena, L. (eds.) Accuracy Improvements in Linguistic Fuzzy Modeling, vol. 129 of Studies in Fuzziness and Soft Computing, pp. 3–24. Springer, Berlin (2003)

    Google Scholar 

  32. Cordon, O., Del Jesus, M.J., Herrera, F.: Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods. Int. J. Intell. Syst. 13, 1025–1053 (1997)

    Article  Google Scholar 

  33. Gonzàlez, A., Pérez, R.: A study about the inclusion of linguistic hedges in a fuzzy rule learning algorithm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7(3), 257–266 (1999)

    Article  Google Scholar 

  34. Bosc, P., Pivert, O.: Fuzzy queries and relational databases. In: Proceedings of the ACM Symposium on Applied Computing (SAC’94), pp. 170–174, Phoenix, Arizona, USA (1994)

    Google Scholar 

  35. Nakajima, H., Sogoh, T., Arao, M.: Fuzzy database language and library-fuzzy extension to sql. In: Proceedings of the Second IEEE International Conference on Fuzzy Systems, vol. 1, pp. 477–482, San Francisco, CA, USA (1993)

    Google Scholar 

  36. Chen, G., Wei, Q.: Fuzzy association rules and the extended mining algorithms. Inf. Sci. 147(1–4), 201–228 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hölldobler, S., Khang, T.D., Störr, H.: A fuzzy description logic with hedges as concept modifiers. In: Proceedings InTech/VJFuzzy2002, pp. 25–34 (2002)

    Google Scholar 

  38. Medasani, S., Krishnapuram, R.: A fuzzy approach to content-based image retrieval. In: Proceedings of th IEEE International Conference on Fuzzy Systems, pp. 1251–1260, Seoul, Korea (1999)

    Google Scholar 

  39. Botteldooren, D., Verkeyn, A., Cornelis, C., De Cock, M.: On the meaning of noise annoyance modifiers: a fuzzy set theoretical approach. Acta Acustica A United Acustica 88, 239–251 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Bouchon-Meunier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bouchon-Meunier, B., Marsala, C. (2015). Fuzzy Modifiers at the Core of Interpretable Fuzzy Systems. In: Tamir, D., Rishe, N., Kandel, A. (eds) Fifty Years of Fuzzy Logic and its Applications. Studies in Fuzziness and Soft Computing, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-319-19683-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19683-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19682-4

  • Online ISBN: 978-3-319-19683-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics