Abstract
This paper surveys the basic notions and most important results around fuzzy measures and integrals, as proposed independently by Choquet and Sugeno, as well as recent developments. The latter includes bases and transforms on set functions, fuzzy measures on set systems, the notion of horizontal additivity, basic Choquet calculus on the nonnegative real line introduced by Sugeno, the extension of the Choquet integral for nonmeasurable functions, and the notion of universal integral.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A chain from \(\varnothing \) to \(X\) is a sequence \(\varnothing =A_0,A_1,\ldots , A_q=X\) of sets in \({\mathcal F}\) such that \(A_0\subset A_1\subset \cdots \subset A_q\). Its length is \(q\), and the chain is maximal if no other chain from \(\varnothing \) to \(X\) contains it.
References
Pap, E.: Null-Additive Set Functions. Kluwer Academic (1995)
Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic (1994)
Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer (2009)
Pap, E. (ed.): Handbook of Measure Theory. Elsevier (2002)
Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals. Theory and Applications (edited volume). Studies in Fuzziness. Physica Verlag (2000)
Grabisch, M., Labreuche, Ch.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 175, 247–286 (2010). doi:10.1007/s10479-009-0655-8
Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology (1974)
Choquet, G.: Theory of capacities. Ann. de l’Institut Fourier 5, 131–295 (1953)
Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)
Dubois, D., Prade, H.: Possibility Theory. Plenum Press (1988)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
Stanley, R.: Two poset polytopes. Discrete Comput. Geom. 1, 9–23 (1986)
Radojevic, D.: The logical representation of the discrete Choquet integral. Belg. J. Oper. Res. Stat. Comput. Sci. 38, 67–89 (1998)
Faigle, U., Grabisch, M.: Linear transforms, values and least square approximation for cooperation systems. working paper (2014)
Grabisch, M.: \(k\)-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)
Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Vol. II, number 28 in Annals of Mathematics Studies, pp. 307–317. Princeton University Press (1953)
Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (III): interaction index. In: 9th Fuzzy System Symposium, pp. 693–696. Sapporo, Japan (1993) (In Japanese)
Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89, 445–456 (1996)
de Wolf, R.: A brief introduction to Fourier analysis on the Boolean cube. Theory Comput. Libr. Grad. Surv. 1, 1–20 (2008)
O’Donnell, R.: Analysis of Boolean functions, draft 2.0, ch. 1–3. http://www.cs.cmu.edu/odonnell11/boolean-analysis (2007)
Hurst, S., Miller, D., Muzio, J.: Spectral Techniques in Digital Logic. Academic Press, London (1985)
Grabisch, M., Miranda, P.: Exact bounds of the Möbius inverse of monotone set functions. working paper (2013)
Miranda, P., Grabisch, M.: Optimization issues for fuzzy measures. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 7(6), 545–560 (1999)
Miranda, P., Grabisch, M., Gil, P.: \(p\)-symmetric fuzzy measures. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(Suppl.), 105–123 (2002)
Miranda, P., Grabisch, M.: \(p\)-symmetric bi-capacities. Kybernetika 40(4), 421–440 (2004)
Faigle, U., Kern, W.: The Shapley value for cooperative games under precedence constraints. Int. J. Game Theory 21, 249–266 (1992)
Algaba, E., Bilbao, J.M., Borm, P., López, J.J.: The position value for union stable systems. Math. Meth. Oper. Res. 52, 221–236 (2000)
Faigle, U., Grabisch, M.: A discrete Choquet integral for ordered systems. Fuzzy Sets Syst. 168, 3–17 (2011). doi:10.1016/j.fss.2010.10.003
Faigle, U., Grabisch, M., Heyne, M.: Monge extensions of cooperation and communication structures. Eur. J. Oper. Res. 206, 104–110 (2010). doi:10.1016/j.ejor.2010.01.043
Honda, A., Grabisch, M.: An axiomatization of entropy of capacities on set systems. Eur. J. Oper. Res. 190, 526–538 (2008)
Lange, F., Grabisch, M.: Values on regular games under Kirchhoff’s laws. Math. Soc. Sci. 58, 322–340 (2009). doi:10.1016/j.mathsocsci.2009.07.003
Barthélemy, J.-P.: Monotone functions on finite lattices: an ordinal approach to capacities, belief and necessity functions. In: Fodor, J., De Baets, B., Perny, P. (eds.) Preferences and Decisions under Incomplete Knowledge, pp. 195–208. Physica Verlag (2000)
Zhou, C.: Belief functions on distributive lattices. Artif. Intell. 201, 1–31 (2013)
Šipoš, J.: Integral with respect to a pre-measure. Math. Slovaca 29, 141–155 (1979)
Grabisch, M.: The Möbius function on symmetric ordered structures and its application to capacities on finite sets. Discrete Math. 287(1–3), 17–34 (2004)
Grabisch, M.: The symmetric Sugeno integral. Fuzzy Sets Syst. 139, 473–490 (2003)
Singer, I.: Extensions of functions of 0–1 variables and applications to combinatorial optimization. Numer. Funct. Anal. Optim. 7(1), 23–62 (1984)
Marichal, J.-L.: An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Trans. Fuzzy Syst. 8(6), 800–807 (2000)
Marichal, J.-L., Mathonet, P., Tousset, E.: Mesures floues définies sur une échelle ordinale. working paper (1996)
Mesiar, R.: \(k\)-order pan-additive discrete fuzzy measures. In: 7th IFSA World Congress, pp. 488–490. Prague, Czech Republic (1997)
Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, pp. 1329–1379. Elsevier Science (02002)
Couceiro, M., Marichal, J.-L.: Axiomatizations of Lovász extensions of pseudo-boolean functions. Fuzzy Sets Syst. 181, 28–38 (2011)
Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986)
de Campos, L., Bolaños, M.J.: Characterization and comparison of Sugeno and Choquet integrals. Fuzzy Sets Syst. 52, 61–67 (1992)
Murofushi, T., Sugeno, M., Machida, M.: Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets Syst. 64, 73–86 (1994)
Couceiro, M., Marichal, J.-L.: Axiomatizations of quasi-Lovász extensions of pseudo-boolean functions. Aequat. Math. 82, 213–231 (2011)
Couceiro, M., Marichal, J.-L.: Discrete integrals based on comonotonic modularity. Axioms 3, 390–403 (2013)
Marichal, J.-L.: On Sugeno integral as an aggregation function. Fuzzy Sets Syst. 114, 347–365 (2000)
Sugeno, M.: A note on derivatives of functions with respect to fuzzy measures. Fuzzy Sets Syst. 222, 1–17 (2013)
Sugeno, M.: A way to choquet calculus. IEEE Trans. Fuzzy Systems, to appear
Weber, S.: \(\bot \)-decomposable measures and integrals for archimedean t-conorms \(\bot \). J. Math. Anal. Appl. 101, 114–138 (1984)
Kruse, R.: Fuzzy integrals and conditional fuzzy measures. Fuzzy Sets Syst. 10, 309–313 (1983)
Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)
Murofushi, T., Sugeno, M.: Fuzzy t-conorm integrals with respect to fuzzy measures : generalization of Sugeno integral and Choquet integral. Fuzzy Sets Syst. 42, 57–71 (1991)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)
Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral I. Kybernetika 41, 397–422 (2005)
Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral II. Kybernetika 41, 469–496 (2005)
Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral III. Kybernetika 41, 497–518 (2005)
Shilkret, N.: Maxitive measure and integration. Nederl. Akad. Wetensch. Proc. Ser. A 74, 109–116 (1971)
Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for choquet and sugeno integral. IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)
Klement, E.P., Mesiar, R., Spizzichino, F., Stupňanová, A.: Universal integrals based on copulas. Fuzzy Optim. Decis. Making 13, 273–286 (2014)
Azrieli, Y., Lehrer, E.: Extendable cooperative games. J. Public Econ. Theor. 9, 1069–1078 (2007)
Lehrer, E., Teper, R.: The concave integral over large spaces. Fuzzy Sets Syst. 159, 2130–2144 (2008)
Lehrer, E.: A new integral for capacities. Econ. Theor. 39, 157–176 (2009)
Even, Y., Lehrer, E.: Decomposition-integral: Unifying choquet and the concave integrals. Econ. Theor. 56, 33–58 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Grabisch, M. (2015). Fuzzy Measures and Integrals: Recent Developments. In: Tamir, D., Rishe, N., Kandel, A. (eds) Fifty Years of Fuzzy Logic and its Applications. Studies in Fuzziness and Soft Computing, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-319-19683-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-19683-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19682-4
Online ISBN: 978-3-319-19683-1
eBook Packages: EngineeringEngineering (R0)