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Abstract. For both the Lempel Ziv 77- and 78-factorization we propose algorithms generating the
respective factorization using (1 + ǫ)n lg n+O(n) bits (for any positive constant ǫ ≤ 1) working space
(including the space for the output) for any text of size n over an integer alphabet in O

(

n/ǫ2
)

time.

1 Introduction

It is difficult to find any practical scenario in computer science for which one could not reason
about compression. Although common focus lies on compression of data on disc storage, for some
usages, squeezing transient memory is also practically beneficial. For instance, the zram module of
modern Linux kernels [35] compresses blocks of the main memory in order to prevent the system
from running out of working memory. Compressing RAM is sometimes more preferable than storing
transient data on secondary storage (e.g., in a swap file), as the latter poses a more severe perfor-
mance loss. Another example are websites that usually transferred as “gzipped” data by hosting
servers [34]. A server may cache generated webpages in a compressed form in RAM for performance
benefits. To sum up, a common task of these scenarios is the compression and maintenance of data
in main memory in order to provide a space-economical, fast access.

Central in many compression algorithms are the LZ77 [37] or LZ78 [38] factorizations. Both
techniques were invented in the late 70’s and set a milestone in the field of data compression.
Since main memory sizes of ordinary computers do not scale as fast as the growth of datasets,
insufficient memory is a well-aware problem; both huge mainframes with massive datasets and tiny
embedded systems are valid examples for which a simple compressor may end up depleting all RAM.
Besides, they have also been found to be a valuable tool for detecting various kinds of regularities
in strings [4, 6, 14,21–23,26], for indexing [7, 10,11,18,19,31] and for analyzing strings [5, 24,25].

Large datasets pose a challenge to the main memory budget. For a solution, one either has
to think about algorithm engineering in external memory, or about how to slim down memory
consumption during computation in RAM. Wrt. the latter, we propose an approach that uses
(1 + ǫ)n lg n + O(n) bits (for any positive constant ǫ ≤ 1) working space (including the space for
the output) while sustaining linear time computation. Our approach differs from the more recent
algorithms (see below), as it uses a succinct suffix tree representation.

Related Work. While there are naive algorithms that take O(1) working space with quadratic
running time (for both LZ77 and LZ78), linear time algorithms with very restricted space emerged
only in recent years.

Wrt. LZ77, the bound of 3n lg n bits set by [12] was very soon lowered to 2n lg n by [16]. For
small alphabet size σ, the upper bound of n lg n+O(σ lg n) bits by [13] is also very compelling. Their
common idea is the usage of previous- and/or next-smaller-value-queries [33]. While the approach
of Kärkkäinen et al. [16] stores SA and NSV completely in two arrays, Goto et al. [13] can cope
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with a single array whose length depends on the alphabet size. In [20], a practical variant having
the worst case performance guarantees of (1 + ǫ)n lg n + n + O(σ lg n) bits of working space and
O
(

n lgσ/ǫ2
)

time was proposed.

Wrt. LZ78, by using a naive trie implementation, the factorization is computable with O(z lg z)
bits space and O(n lg σ) overall running time, where z is the size of LZ78 factorization. More
sophisticated trie implementations [9] improve this to O

(

n+ zlg2 lg σ/lg lg lg σ
)

time using the
same space.

Jansson et al. [15] proposed a compressed dynamic trie based on word packing, and showed an
application to LZ78 trie construction that runs in O(n(lg σ + lg lgσ n)/ lgσ n) bits of working space
and O

(

n lg2 lg n/ (lgσ n lg lg lg n)
)

time. When lg σ = o
(

lg n lg lg lg n/lg2 lg n
)

, their algorithm runs
even in sub-linear time, but in the worst case it is super-linear. For an integer alphabet a linear
time algorithm was recently proposed in [30], which utilizes the fact that LZ78 trie is superimposed
on the suffix tree of a string. Although their algorithm works in O(n lg n) bits of space, they did
not care about the constant factor, and the use of the (complicated) dynamic marked ancestor
queries [1] seems to prevent them from achieving a small constant factor.

2 Preliminaries

Let Σ denote an integer alphabet of size σ = |Σ| = nO(1). An element w in Σ∗ is called a string,
and |w| denotes its length. The empty string of length 0 is called ε. For any 1 ≤ i ≤ |w|, w[i] denotes
the i-th character of w. When w is represented by the concatenation of x, y, z ∈ Σ∗, i.e., w = xyz,
then x, y and z are called a prefix, substring and suffix of w, respectively. In particular, a suffix
starting at position i of w is called the i-th suffix of w. For any 1 ≤ j ≤ |w|, let Sj(w) denote the
set of substrings of w that start strictly before j.

In the rest of this paper, we take a string T of length n > 0, which is subject to LZ77 or LZ78
factorization. For convenience, let T [n] be a special character that appears nowhere else in T , so
that no suffix of T is a prefix of another suffix of T . Our computational model is the word RAM
model with word size Ω(lg n). Further, we assume that T is read-only; accessing a word costs O(1)
time (e.g., T is stored in RAM using n lg σ bits).

The suffix trie of T is the trie of all suffixes of T . The suffix tree of T , denoted by ST,
is the tree obtained by compacting the suffix trie of T . ST has n leaves and at most n internal
nodes. We denote by V the nodes and by E the edges of ST. For any edge e ∈ E, the string stored
in e is denoted by c(e) and called the label of e. Further, the string depth of a node v ∈ V is
defined as the length of the concatenation of all edge labels on the path from the root to v. The
leaf corresponding to the i-th suffix is labeled with i. SA and ISA denote the suffix array and the
inverse suffix array of T , respectively [27]. For any 1 ≤ i ≤ n, SA[i] is identical to the label of the
lexicographically i-th leaf in ST. LCP and RMQ are abbreviations for longest common prefix and
range minimum query, respectively. LCP is a DS (data structure) on SA such that LCP[i] is the
LCP of the lexicographically i-th smallest suffix with its lexicographic predecessor for i = 2, . . . , n.

For any bit vector B with length |B|, B. rank1(i) counts the number of ‘1’-bits in B[1..i], and
B. select1(i) gives the position of the i-th ‘1’ in B. Given B, a DS that uses additional o(|B|) bits of
space and supports any rank/select query on B in constant time can be built in O(|B|) time [29].

As a running example, we take the string T = aaabaabaaabaa$. Since both algorithms for LZ77
and LZ78 are based on the suffix tree, we depict the suffix tree of this example string in Fig. 1.
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Fig. 1. The suffix tree of T = aaabaabaaabaa$. The leaf labels are displayed by the underlined numbers. The other
numbers show the pre-order of the nodes.

2.1 Lempel Ziv Factorization

A factorization partitions T into z substrings T = f1 · · · fz. These substrings are called factors.
In particular, we have:

Definition 1. A factorization f1 · · · fz = T is called the LZ77 factorization of T iff fx =
argmaxS∈Sj(T )∪Σ |S| for all 1 ≤ x ≤ z with j = |f1 · · · fx−1|+ 1.

The classic LZ77 factorization adds an additional fresh character to the referencing factors such
that the following definition holds:

Definition 2. A factorization f1 · · · fz = T is called the classic LZ77 factorization of T iff fx
is the shortest prefix of fx · · · fz that occurs exactly once in f1 · · · fx.

Definition 3. A factorization f1 · · · fz = T is called the LZ78 factorization of T iff fx = f ′
x · c

with f ′
x = argmaxS∈{fy:y<x}∪{ε} |S| and c ∈ Σ for all 1 ≤ x ≤ z.

We identify factors by text positions, i.e., we call a text position j the factor position of fx
(1 ≤ x ≤ z) iff factor fx starts at position j. A factor fx may refer to either (LZ77) a previous text
position j (called fx’s referred position), or (LZ78) to a previous factor fy (called fx’s referred
factor—in this case y is also called the referred index of fx). If there is no suitable reference
found for a given factor fx with factor position j, then fx consists of just the single letter T [j]. We
call such a factor a free letter. The other factors are called referencing factors.

Our final data structures allow us to access arbitrary factors (factor position and referred
position (LZ77)/referred index (LZ78)) in constant time.
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2.2 Data Structures

Common to both our algorithms is the construction of a succinct ST representation. It consists of
SA with n lg n bits, LCP with 2n+ o(n) bits, and a 2|V |+ o(|V |)-bit representation of the topology
of ST, for which we choose the DFUDS [3] representation. The latter is denoted by SucST. We
make use of several construction algorithms from the literature:

– SA can be constructed in O
(

n/ǫ2
)

time and (1 + ǫ)n lg n bits of space, including the space for
SA itself [17].

– Given SA, LCP can be computed in O(n) time with no extra space [36]. Note that LCP can only
answer LCP[i] in constant time if SA[i] is also available. This is an important remark, because we
will discard at several occasions SA in order to free space, and this discarding causes additional
difficulties.

– Given both SA and LCP, a space economical construction of SucST was discussed in [33, Alg. 1].
The authors showed that the DFUDS representation of ST can be built in O(n) time with
n+ o(n) bits of working space.

We identify a node v ∈ V with its pre-order number, which is also the order in which the opening
parentheses occur in the DFUDS representation. So we implicitly identify every node v ∈ V with
its pre-order number (enumerated by 1, . . . , |V |).

Since our ST is static, we can perform various operations on the tree topology in constant time
(see, e.g., [32, 33]). Among them, we especially use the following operations (for any v ∈ V and
i ∈ N): parent(v) returns the parent of v; and level anc(v, i) returns the i-th ancestor of v. By
building the min-max tree [32] on the DFUDS of ST in O(n) time (using O(n) bits of space), we
can get SucST supporting these operations in constant time.

Additionally, we are interested in answering str depth(v) on ST; str depth(v) returns the string
depth of v ∈ V . As noted in [33], an RMQ data structure on LCP can be built in O(n) time
and n + o(n) bits of working space to support str depth in constant time. Note that the operation
str depth becomes unavailable when SA is discarded.

Our algorithms in Sect. 3 and 4 make use of two arrays: A1 of size n lg n bits, and a small helper
array A2 of size ǫn lg n bits. (We chose such generic names since the contents of these arrays will
change several times during the LZ-computation.)

Node-Marking Vectors. In our algorithms, we sometimes deal with subsets V ′ of V . Pre-order
numbers enumerating only the nodes in V ′ can naturally be used to map nodes in V ′ to the range
[1.. |V ′|]. For this purpose, we use a node-marking vector MV ′ , which is a bit vector of length
|V |, such that MV ′ [v] = 1 iff v ∈ V ′ for any 1 ≤ v ≤ |V |. We write ρV ′(v) := MV ′ . rank1(v) for any
node v ∈ V ′.

3 LZ77

The main idea is to perform leaf-to-top traversals accompanied by the marking of visited nodes.
The marked nodes are indicated by a ‘1’ in a bit vector of size |V |. Starting from the situation where
only the root is marked, in the j-th leaf-to-top traversal for any 1 ≤ j ≤ n, we traverse ST from
the leaf labeled with j towards the root, while marking visited nodes until we encounter an already
marked node. Observe that right before the j-th leaf-to-top traversal, each string of Sj(T ) can be
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obtained by following the path from the root to some marked node. Hence, the LZ77 factorization
can be determined during these leaf-to-top traversals: If j is a factor position of a factor f , the last
accessed node v during the j-th leaf-to-top traversal reveals f ’s referred position. More precisely,
v is either the root, or a node that was already marked in a former traversal. If v is the root, f is
a free letter. Otherwise, we call v the referred node of f . Then, the factor length is str depth(v),
and the referred position is the minimum leaf label in the subtree rooted at v (retrieved, e.g., by an
RMQ on SA). Since every visited node will be marked, and a marked node will never be unmarked,
the total number of parent(·)-operations is upper bounded by the number of nodes in ST, i.e., O(n).

3.1 Algorithm

We start with SA stored in A1[1..n], and some O(n)-bit DS to provide SucST, RMQs on SA, and
RMQs on LCP. Note that the LZ77 computation via leaf-to-top traversals, as explained above,
accesses ISA n times to fetch suffix leaves that are starting nodes of the traversals, and accesses SA
O(z) times to compute the factor lengths and the referred positions. Then, if we have both SA and
ISA, the LZ77 factorization can be easily done in O(n) time by the leaf-to-top traversals. However,
allowing only (1 + ǫ)n lg n+O(n) bits for the entire working space, it is no longer possible to store
both SA and ISA completely at the same time.

With Extra Output Space. Let us first consider the easier case where the result of the factor-
ization can be output outside the working space. We can then use the array+inverse DS of Munro
et al. [28, Sect. 3.1], which allows us to access inverse array’s values in O(1/ǫ) time by spending
additional ǫn lgn bits (on top of the array’s size). Since ISA is accessed more often than SA, we first
convert SA on A1 into ISA and then create its array+inverse DS so that accessing ISA and SA can
be done in O(1) and O(1/ǫ) time, respectively. Although it is not explicitly mentioned in [28], the
DS can be constructed in O(n) time. Then, the leaf-to-top traversals can be smoothly conducted,
leading to O(z/ǫ+ n) = O(n) running time.

Although this is already an improvement over the currently best linear-time algorithm using
2n lg n bits [16], doing so would prevent us from also storing the output of the LZ77 factorization
in the working space. Solving this is exactly what is explained in the remainder of this section.

Outline. It is difficult to find space for writing the referred positions; the former algorithm already
uses (1 + ǫ)n lg n bits of working space for the array+inverse DS. Overwriting it would corrupt the
DS and cause a problem when accessing SA or ISA. We evade this problem by performing several
rounds of leaf-to-top traversals during which we build an array that registers every visit of a referred
node. (A minor remark is that this approach does not even need RMQs on SA.)

Our algorithm is divided into three rounds of leaf-to-top traversals and a final matching phase,
all of which will be discussed in detail in the following:

First Round: Construct a bit vector Bf [1..n] marking all factor positions in T , and a bit vector
Br[1..z] marking the referencing factors. Determine the set of referred nodes Vr ⊂ V , and mark
them with a node-marking vector MVr .

Second Round: Construct a bit vector BD counting (in unary) the number of referred nodes
from Vr visited during each traversal.

Third Round: Construct an array D storing the pre-order numbers of all referred nodes visited
during each traversal (as counted in the second round).

5



Matching: Convert the pre-order numbers in D to referred positions.

Fig. 2 visualizes the leaf-to-top traversals along with the created data structures BD and D.
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Fig. 2. The LZ77 factorization partitions T = aaabaabaaabaa$ as a|aa|b|aabaa|abaa|$. The shaded nodes are the
referred nodes. Nodes 5, 10 and 14 are referred by f2, f4 and f5, respectively. During the leaf-to-top traversals: In the
1st traversal, node 5 is marked; In the 2nd traversal, node 10 is marked, and node 5 is referred to by factor f2 with
factor position 2; In the 3rd traversal, node 14 is marked; In the 5th traversal, node 10 is referred to by factor f4
with factor position 5; In the 10th traversal, node 14 is referred to by factor f5 with factor position 10; Therefore,
BD = 01001011011111011111 and D = [5, 10, 5, 14, 10, 14], where referred entries are depicted by shaded entries.

Details. In the first round, we compute the factor lengths as before by leaf-to-top traversals,
which are used to construct Bf . Since the set of referred nodes can be identified during the leaf-to-
top traversals, MVr can be easily constructed. We also compute Br by setting Br[x]← 1 for every
referencing factor fx with 1 ≤ x ≤ z. For the rest of the algorithm, the information of SA is not
needed any longer.

We now aim at generating the array D storing a sequence of pre-order numbers of referred
nodes, which will finally enable us to determine the referred positions of each referencing factor. D
is formally defined as a sequence obtained by outputting the pre-orders of referred nodes whenever
they are marked or referred to during the leaf-to-top traversals. Hence, each referred node appears
in D for the first time when it is marked, and after that it occurs whenever it is the last accessed
node of the j-th traversal, where 1 ≤ j ≤ n coincides with a factor position. To see how D will be
useful for obtaining the referred positions, consider a node v ∈ V that was marked during the k-th
traversal. If we stumble upon v during the j-th traversal (for any factor position j > k) we know
that k is the referred position for the factor with factor position j (because v had not been marked
before the k-th traversal).

Alas, just D alone does not tell us which referred nodes are found during which traversal. We
want to partition D by the n text positions, s.t. we know the traversal numbers which the referred
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nodes belong to. This is done by a bit vector BD that stores a ‘1’ for each text position j, and
intersperses these ‘1’s with ‘0’s counting the number of referred nodes written to D during the
j-th traversal. The size of the j-th partition (1 ≤ j ≤ n) is determined by the number of referred
nodes accessed during the j-th traversal. Hence the number of ‘0’s between the (j − 1)-th and
j-th ‘1’ represents the number of entries in D for the j-th suffix. Formally, BD is a bit vector
such that D[jb..je] represents the sequence of referred nodes that are written to D during the j-
th leaf-to-top traversal, where, for any 1 ≤ j ≤ n, jb := BD. rank0(BD. select1(j − 1)) + 1 and
je := BD. rank0(BD. select1(j)). Note that for each factor position j of a referencing factor f we
encountered its referred node during the j-th traversal; this node is the last accessed node during
that traversal, and was stored in D[je], which we call the referred entry of f . Note that we do
not create a rank0 nor a select1 DS on BD because we will get by with sequential scans over BD

and D.
Finally, we show the actual computation of BD and D. Unfortunately, the computation of D

cannot be done in a single round of leaf-to-top traversals; overwriting A1 naively withD would result
in the loss of necessary information to access the suffix tree’s leaves. This is solved by performing
two more rounds of leaf-to-top traversals, as already outlined above: In the second round, with
the aid of MVr , BD is generated by counting the number of referred nodes that are accessed during
each leaf-to-top traversal. Next, according to BD, we sparsify ISA by discarding values related to
suffixes that will not contribute to the construction of D (i.e., those values i for which there is no
’0’ between the (i− 1)-th and the i-th ’1’ in BD). We align the resulting sparse ISA to the right of
A1. Afterwards, we overwrite A1 with D from left to right in a third round using the sparse ISA.
The fact that this is possible is proved by the following

Lemma 1. |D| ≤ n.

Proof. First note that the size of D is |Vr| + zr, where zr is the number of referencing factors
(number of ‘1’s in Br). Hence, we need to prove that |Vr| + zr ≤ n. Let z1r (resp. z>1

r ) denote
the number of referencing factors of length 1 (resp. longer than 1), and let V 1

r (resp. V >1
r ) denote

the referred nodes whose string depth is 1 (resp. longer than 1). Also, zf denotes the number of
free letters. Clearly, |Vr| =

∣

∣V 1
r

∣

∣ +
∣

∣V >1
r

∣

∣, zr = z1r + z>1
r ,

∣

∣V 1
r

∣

∣ ≤ zf , and
∣

∣V >1
r

∣

∣ ≤ z>1
r . Hence

|Vr| + zr =
∣

∣V 1
r

∣

∣ +
∣

∣V >1
r

∣

∣ + z1r + z>1
r ≤ zf + z1r + 2z>1

r ≤ n. The last inequality follows from the
fact that the factors are counted disjointly by zf , z

1
r and z>1

r , and the sum over the lengths of all
factors is bounded by n, and every factor counted by z>1

r has length at least 2.
⊓⊔

By Lemma 1, D fits in A1. Since each suffix having an entry in the sparse ISA has at least one
entry in D, overwriting the remaining ISA values before using them will never happen.

Once we have D on A1, we start matching referencing factors with their referred positions.
Recall that each referencing factor has one referred entry, and its referred position is obtained by
matching the leftmost occurrence of its referred node in D.

Let us first consider the easy case with |Vr| ≤ ⌊nǫ⌋ such that all referred positions fit into A2

(the helper array of size ǫn lg n bits). By BD we know the leaf-to-top traversal number (i.e., the
leaf’s label) during which we wrote D[i] (for any 1 ≤ i ≤ |D|). For 1 ≤ m ≤ |Vr|, the zero-initialized
A2[m] will be used to store the smallest suffix number at which we found the m-th referred node
(i.e., the m-th node of Vr identified by pre-order).

Let us consider that we have set A2[m] = k, i.e., the m-th referred node was discovered for the
first time by the traversal of the suffix leaf labeled with k.
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Whenever we read the referred entry D[i] of a factor f with factor position larger than k and
ρVr(D[i]) = m, we know by A2[m] = k that the referred position of f is k. Both the filling of A2 and
the matching are done in one single, sequential scan over D (stored in A1) from left to right: While
tracking the suffix leaf’s label with a counter 1 ≤ k ≤ n, we look at t := ρVr(D[i]) and A2[t] for each
array position 1 ≤ i ≤ |D|: if A2[t] = 0, we set A2[t]← k. Otherwise, D[i] is a referred entry of the
factor f with factor position k, for which A2[t] stores its referred position. We set A1[i] ← A2[t].
By doing this, we overwrite the referred entry of every referencing factor f in D with the referred
position of f .

If |Vr| > ⌊nǫ⌋, we run the same scan multiple times, i.e., we partition {1, . . . , |Vr|} into ⌈|Vr| /(nǫ)⌉
equi-distant intervals (pad the size of the last one) of size ⌊nǫ⌋, and perform ⌈|Vr| /(nǫ)⌉ scans. In
order to skip the referred entries in D belonging to an already scanned part of Vr, we use a bit
vector that marks exactly those positions. Since each scan takes O(n) time, the whole computation
takes O(|Vr| /ǫ) = O(z/ǫ) time.

Now we have the complete information of the factorization: The length of the factors can be
obtained by a select-query on Bf , and A1 contains the referred positions of all referencing factors.
By a left shift we can restructure A1 such that A1[x] tells us the referred position (if it exists,
according to Br[x]) for each factor 1 ≤ x ≤ z. Hence, looking up a factor can be done in O(1) time.

3.2 Classic LZ77 factorization

During the leaf-to-top traversals in Section 3.1, we have to account for the fact that the length
of each referencing factor has to be enlarged (due to the fresh character). It suffices to mark the
factors in Bf appropriately to the possibly modified lengths (Bf is used to retrieve position and
length of any factor); the new shape of Bf induces implicitly a modification of Br and BD. The
fresh character that ends a referencing factor will never be considered to be a factor beginning.
Finally, the fresh character of each referencing factor can be lookup up with Bf and T . Lemma 1
still holds for this variant of the factorization; in fact, since z1r = 0 and V 1

r = ∅, the proof gets
easier.

4 LZ78

Common implementations use a trie for storing the factors. In the beginning, the trie just consists
of the root. For each newly generated factor we append a leaf to the trie. If the parent of this leaf is
the root, the factor is a free letter, otherwise it references the factor that corresponds to the parent
node. Hence, each node (except the root) represents a factor. We call this trie the LZ78 trie. Recall
that all trie implementations have a (log-)logarithmic dependence on σ for top-down-traversals (see
the Introduction); one of our tricks is using level anc queries starting from the leaves in order to
get rid of this dependence. For this task we need ISA to fetch the correct suffix leaf; hence, we first
overwrite SA by its inverse.

4.1 Algorithm

Interestingly, the LZ78 trie is superimposed on the suffix trie of T [2, 30]. Thus, the LZ78 trie
structure can be represented by ST, with an additional DS storing the number of LZ78 trie nodes
that lie on each edge of ST. Each trie node v is called explicit iff it is not discarded during the
compactification of the suffix trie towards ST; the other trie nodes are called implicit.
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For every edge e of ST we use a counting variable 0 ≤ ne ≤ |c(e)| that keeps track of how far e
is explored. If ne = 0, then the factorization has not (yet) explored this edge, whereas ne = |c(e)|
tells us that we have already reached the ending node v ∈ V of e =: (u, v). We defer the question
how the ne- and |c(e)|-values are stored in ǫn lg n bits to Sect. 4.2, as those technicalities might not
be of interest to the general audience.

Because we want to have a representative node in ST for every LZ78-factor, we introduce the
concept of witnesses: For any 1 ≤ x ≤ z, the witness of fx is the ST node that is either the explicit
representation of fx, or, if such an explicit representation does not exist, the ending node in ST of
the edge on which fx lies.

Our next task is therefore the creation of an array W [1..z] s.t. W [x] stores the pre-order number
of fx’s witness. With W it will be easy to find the referred index y of any referencing factor fx.
That is because fy will either share the witness with fx, or W [y] is the parent node of W [x]. Storing
W will be done by overwriting the first z positions of the array A1.

We start by computing W [x] for all 1 ≤ x ≤ z in increasing order. Suppose that we have already
processed x− 1 factors, and now want to determine the witness of fx with factor position j. ISA[j]
tells us where to find the ST leaf labeled with j. Next, we traverse ST from the root towards this
leaf (navigated by level anc queries in deterministic constant time per edge) until we find the first
edge e with ne < |c(e)|, namely, e is the edge on which we would insert a new LZ78 trie leaf. It is
obvious that the ending node of e is fx’s witness, which we store in W [x]. We let the LZ78 trie grow
by incrementing ne. The length of fx is easily computed by summing up the |c(·)|-values along the
traversed path, plus ne’s value. Having processed fx with factor position j ∈ [x..n], ISA’s values in
A1[1..j] are not needed anymore. Thus, it is eligible to overwrite A1[x] by W [x] for 1 ≤ x ≤ z while
computing fx. Finally, A1[1..z] stores W . Meanwhile, we have marked the factor positions in a bit
vector Bf [1..n].

For our running example, we conducted the traversals, and marked the witnesses and LZ78 trie
nodes superimposed by ST in Fig. 3.

Matching the factors with their references can now be done in a top-down-manner by using W .
Let us consider a referencing factor fx with referred factor fy. We have two cases: Whenever fy is
explicitly represented by a node v (i.e., by fy’s witness), v is the parent of fx’s witness. Otherwise,
fy has an implicit representation and hence has the same witness as fx. Hence, if W stores at
position x the first occurrence of W [x] in W , fy is determined by the largest position y < x for
whichW [y] = parent(v); otherwise (W [x] is not the first occurrence of W [x] inW ), then the referred
factor of fx is determined by the largest y < x with W [x] = W [y].

Now we hold W in A1[1..z], leaving us A1[z + 1..n] as free working space that will be used to
store a new array R, storing for each witness w the index of the most recently processed factor
whose witness is w. However, reserving space in R for every witness would be too much (there are
potentially z many of them); we will therefore have to restrict ourselves to a carefully chosen subset
of witnesses. This is explained next.

First, let us consider a witness w that is witnessed by a single factor fx whose LZ78 trie node
is a leaf. Because no other factor will refer to fx, we do not have to involve w in the matching.
Therefore, we can neglect all such witnesses during the matching. The other witnesses (i.e., those
being witnessed by at least one factor that is not an LZ78 trie leaf) are collected in a set VΞ and
marked by a bit vector MVΞ

. |VΞ | is at most the number zi of internal nodes of the LZ78 trie, which
is bounded by n− z, due to the following

Lemma 2. z + zi ≤ n.
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Fig. 3. The LZ78 trie for T = aaabaabaaabaa$ is depicted by bullets on the suffix tree. The LZ78 factorization
partitions T as a|aa|b|aab|aaa|ba|a$. W = [3, 5, 18, 10, 7, 18, 4] and VΞ = {3, 5, 18}.

Proof. Let α (resp. β) be the number of free letters that are internal LZ78 trie nodes (resp. LZ78
trie leaves). Also, let γ (resp. δ) be the number of referencing factors that are internal LZ78
trie nodes (resp. LZ78 trie leaves). Obviously, α + β + γ + δ = z. Wrt. the factor length, each
referencing factor has length of at least 2, while each free letter is exactly one character long. Hence
2(γ+δ)+α+β = z+γ+δ ≤ n. Since each LZ78 leaf that is counted by δ has an LZ78 internal node
of depth one as ancestor (counted by α), α ≤ δ holds. Hence, z+zi ≤ z+α+γ ≤ z+γ+ δ ≤ n. ⊓⊔

By Lemma 2, if we let R store only the indices of factors whose witnesses are in VΞ , it fits into
A1[z + 1..n], and we can use MVΞ

to address R.
We now describe how to convert W (stored in A1[1..z]) into the referred indices, such that in

the end A1[x] contains the referred index of fx for 1 ≤ x ≤ z. We scan W = A1[1..z] from left to
right while keeping track of the index of the most recently visited factor that witnesses v, for each
witness v ∈ VΞ at R[ρVΞ

(v)]. Suppose that we are now processing fx with witness v = W [x].

– If v /∈ VΞ or R[ρVΞ
(v)] is empty, we are currently processing the first factor that witnesses v.

Further, if fx is not a free letter, its referred factor is explicitly represented by the parent of v.
We can find its referred index at position ρVΞ

(parent(v)) in R.
– Otherwise, v ∈ VΞ , and R[ρVΞ

(v)] has already stored a factor index. Then R[ρVΞ
(v)] is the

referred index of fx.

In either case, if v ∈ VΞ , we update R by writing the current factor index x to R[ρVΞ
(v)]. Note that

after processing fx, the value A1[x] is not used anymore. Hence we can write the referred index of
fx to A1[x] (if it is a referring factor) or set A1[x] ← 0 (if it is a free letter). In the end, A1[1..z]
stores the referred indices of every referring factor.

Now we have the complete information about the LZ78 factorization: For any 1 ≤ x ≤ z, fx is
formed by fyc, where y = A1[x] is the referred index and c = T [Bf . select1(x+1)−1] the additional
letter (free letters will refer to f0 := ε). Hence, looking up a factor can be done in O(1) time.
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4.2 Bookkeeping the LZ78 Trie Representation

Basically, we store both ne and |c(e)| for each edge e so as to represent the LZ78 trie construction
in each step. A naive approach would spend 2 lg(maxe∈E |c(e)|) bits for every edge, i.e., 4n lg n bits
in the worst case. In order to reduce the space consumption to ǫn lgn + o(n) bits, we will exploit
two facts: (1) the superimposition of the LZ78 trie on ST takes place only in the upper part of ST,
and (2) most of the needed |c(e)|- and ne-values are actually small.

More precisely, we will introduce an upper bound for the ne values, which shows that the
necessary memory usage for managing the ne and |c(e)| values is, without a priori knowledge of the
LZ78 trie’s shape, actually very low.

Note that although we do not know the LZ78 trie’s shape, we will reason about those nodes
that might be created by the factorization. For a node v ∈ V , let height(v) denote the height of v in
the LZ78 trie if v is the explicit representation of an LZ78 trie node; otherwise we set height(v) = 0.

For any node v ∈ V , let l(v) denote the number of descendant leaves of v. The following lemma
gives us a clue on how to find an appropriate upper bound:

Lemma 3. Let u, v ∈ V with e := (u, v) ∈ E. Further assume that u is the explicit representation

of an LZ78 trie node. Then height(v) is upper bounded by l(v) − |c(e)|.

Proof. Let π be a longest path from u to some descendant leaf of v, and d := height(v) + |c(e)|
(i.e., the number of LZ78 trie edges along π). By construction of the LZ78 trie, the ST node v must
have at least d leaves, for otherwise the (explicit or implicit) LZ78 trie nodes on π will never get
explored by the factorization. So d ≤ l(v), and the statement holds. ⊓⊔

Further, let root denote the root node of the suffix trie. In particular, root is an explicit LZ78 trie
node. Consider two arbitrary nodes u, v ∈ V with e := (u, v) ∈ E. Obviously, the suffix trie node of
v is deeper than the suffix trie node of u by |c(e)|. Putting this observation together with Lemma 3,
we define h : V → N0, which upper bounds height(·):

h(v) =

{

n if v = root,

max (0,min (h(u), l(v)) − |c(e)|) if there is an e := (u, v) ∈ E.

Since the number of LZ78 trie nodes on an edge below any v ∈ V is a lower bound for height(v),
we conclude with the following lemma:

Lemma 4. For any edge e = (v,w) ∈ E, ne ≤ min (|c(e)| , h(v)).

Let us remark that Lemma 4 does not yield a tight bound. For example, the height of the LZ78
trie is indeed bounded by

√
2n (see, e.g., [2, Lemma 1]). But we do not use this property to keep

the analysis simple.
Instead, we classify the edges e ∈ E into two sets, depending on whether ne ≤ ∆ :=

⌊

nǫ/4
⌋

holds for sure or not. By Lemma 4, this classification separates E into E≤∆ := {(u, v) ∈ E :
min (|c((u, v))| , h(u)) ≤ ∆} and E>∆ := E \ E≤∆. Since 2 lg∆ bits are enough for bookkeeping
any edge e ∈ E≤∆, the space needed for these edges fits in 2 |E≤∆| lg∆ ≤ nǫ lg n bits. Thus, our
focus lies now on the edges in E>∆; each of them costs us 2 lg n bits. Fortunately, we will show that
|E>∆| is so small that the space of 2 |E>∆| lg n bits needed by these edges is in fact o(n) bits.

We call any e ∈ E>∆ a ∆-edge and its ending node a ∆-node. The set of all ∆-nodes is
denoted by V∆. As a first task, let us estimate the number of ∆-edges on a path from a node
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v ∈ V∆ to any of its descendant leaves; because v is a ∆-node with height(v) ≤ h(v), this number

is upper bounded by
⌊

h(v)
∆

⌋

≤
⌊

l(v)−∆
∆

⌋

=
⌊

l(v)
∆

⌋

− 1. For the purpose of analysis, we introduce

ĥ : (V∆ ∪ {root}) → N0, which upper bounds the number of ∆-edges that occur on a path from a
node to any of its descendant leaves:

ĥ(v) =

{
⌊

n
∆

⌋

if v = root,

min
(

ĥ(p̂(v))− 1,
⌊

l(v)
∆

⌋

− 1
)

otherwise,

where p̂ : V∆ → (V∆ ∪ {root}) returns for a node v either its deepest ancestor that is a ∆-node, or
the root if such an ancestor does not exist. Note that ĥ is non-negative by the definition of V∆.

For the actual analysis, α(v) shall count the number of ∆-edges in the subtree rooted at v ∈
V∆ ∪ {root}.

Lemma 5. For any node v ∈ (V∆ ∪ {root}), α(v) ≤ l(v)
∆

∑ĥ(v)
i=1

1
i .

Proof. We proceed by induction over the values of ĥ(v) for every v ∈ V∆. For ĥ(v) = 0 the subtree
rooted at v has no ∆-edges; hence α(v) = 0. If ĥ(v) = 1, any ∆-node w of the subtree rooted at v
holds the property ĥ(w) = 0. Hence, none of those ∆-nodes are in ancestor-descendant relationship

to each other. By the definition of ∆-nodes, for any ∆-node u, we have 0 ≤
⌊

l(u)
∆

⌋

− 1, and hence,

∆ ≤ l(u). By ∆α(v) ≤∑u∈V∆,p̂(u)=v l(u) ≤ l(v) we get α(v) ≤ l(v)
∆ .

For the induction step, let us assume that the induction hypothesis holds for every u ∈ V∆ with

ĥ(u) < k. Let us take a v ∈ V∆ with ĥ(v) = k. Further, let Vk′ :=
{

u ∈ V∆ : p̂(u) = v and ĥ(u) = k′
}

for 0 ≤ k′ ≤ k − 1 denote the set of ∆-nodes that have the same ĥ value and are descendants of
v, without having a ∆-node as ancestor that is a descendant of v. These constraints ensure that
there does not exist any u ∈ ⋃0≤k′≤k−1 Vk′ =: V that is ancestor or descendant of some node of
V. Thus the sets of descendant leaves of the nodes of V are disjoint. So it is eligible to denote
by Lk′ :=

∑

u∈Vk′
l(u) the number of descendant leaves of all nodes of Vk′ . It is easy to see that

∑k−1
k′=0 Lk′ ≤ l(v). Now, by the hypothesis, and the fact that each u ∈ V is the highest ∆-node on

every path from v to any leaf below u, we get

α(v) ≤ |V0|+
k−1
∑

k′=1





∑

u∈Vk′

l(u)

∆

k′
∑

i=1

1

i
+ |Vk′ |



 = |V0|+
k−1
∑

k′=1

(

Lk′

∆

k′
∑

i=1

1

i
+ |Vk′ |

)

.

By definition of Vk′ and ĥ, we have ĥ(u) = k′ ≤
⌊

l(u)
∆

⌋

− 1 and hence (k′ + 1)∆ ≤ l(u) for any

u ∈ Vk′ . This gives us
Lk′

(k′+1)∆ =
∑

u∈Vk′

l(u)
(k′+1)∆ ≥ |Vk′ |. In sum, we get

α(v) ≤ L0

∆
+

k−1
∑

k′=1

Lk′

∆

k′+1
∑

i=1

1

i
=

k−1
∑

k′=0

Lk′

∆

k′+1
∑

i=1

1

i
≤ l(v)

∆

k
∑

i=1

1

i
.

⊓⊔

By Lemma 5, |E>∆| = α(root) ≤ n
∆

∑

n
∆
i=1

1
i . Since

∑

n
∆
i=1

1
i ≤ 1 + ln n

∆ , we have α(root) ≤
n
∆ + n

∆ ln n
∆ = O

(

n
∆ lg n

∆

)

= O
(

n lg n/
(

nǫ/4
))

. We conclude that the space needed for E>∆ is

2 |E>∆| lg n = O
(

n lg2 n
nǫ/4

)

= o(n) bits.
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Finally, we explain how to implement the data structures for bookkeeping the LZ78 trie rep-
resentation. By an additional node-marking vector MV∆

that marks the V∆-nodes, we divide the
edges into E≤∆ and E>∆. rank / select on MV∆

allows us to easily store, access and increment the
ne values for all edges in constant time. MV∆

can be computed in O(n) time when we have SA on
A1: since str depth allows us to compute every |c(e)| value in constant time, we can traverse ST in
a DFS manner while computing h(v) for each node v, and hence, it is easy to judge whether the
current edge belongs to E>∆. In order to store the h values for all ancestors of the current node
we use a stack. Observe that the h values on the stack are monotonically increasing; hence we can
implement it using a DS with O(n) bits [8, Sect. 4.2].
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