
ar
X

iv
:1

50
2.

06
37

0v
1 

 [
cs

.D
S]

  2
3 

Fe
b 

20
15

A framework for space-efficient string kernels

Djamal Belazzougui1,2 and Fabio Cunial1,2

1Department of Computer Science, University of Helsinki, Finland.∗

2Helsinki Institute for Information Technology, Finland.

September 6, 2021

Abstract

String kernels are typically used to compare genome-scale sequences whose length makes alignment
impractical, yet their computation is based on data structures that are either space-inefficient, or incur
large slowdowns. We show that a number of exact string kernels, like the k-mer kernel, the substrings ker-
nels, a number of length-weighted kernels, the minimal absent words kernel, and kernels with Markovian
corrections, can all be computed in O(nd) time and in o(n) bits of space in addition to the input, using
just a rangeDistinct data structure on the Burrows-Wheeler transform of the input strings, which takes
O(d) time per element in its output. The same bounds hold for a number of measures of compositional
complexity based on multiple value of k, like the k-mer profile and the k-th order empirical entropy, and
for calibrating the value of k using the data.

1 Introduction

Given two strings T 1 and T 2, a kernel is a function that simultaneously converts T 1 and T 2 into vectors T1

and T2 in R
n for some n > 0, and computes a similarity or a distance measure between T1 and T2, without

building and storing Ti explicitly [14]. Kernels are often the method of choice for comparing extremely
long strings, like genomes, read sets, and metagenomic samples, whose size makes alignment infeasible,
yet their computation is typically based on space-inefficient data structures, like (truncated) suffix trees,
or on space-efficient data structures with large slowdowns, like compressed suffix trees (see e.g. [1, 9] and
references therein). The (possibly infinite) dimensions of Ti are, for example, all strings of a specific family
on the alphabet of T 1 and T 2, and the value assigned to vector Ti along dimension W corresponds to
the number of occurrences of string W in T i, often rescaled and corrected in domain-specific ways. Ti

is often called composition vector, and a large number of its components can be zero in practice. In this
paper we focus on space- and time-efficient algorithms for computing the cosine of the angle between two
composition vectors T1 and T2, i.e. on computing the kernel κ(T1,T2) = N/

√
D1D2 ∈ [−1..1], where

N =
∑

W T1[W ]T2[W ] and Di =
∑

W Ti[W ]2. This measure of similarity can be converted into a distance
d(T1,T2) = (1− κ(T1,T2))/2 ∈ [0..1], and the algorithms we describe can be applied to compute norms of
vectorT1−T2, like the p-norm and the infinity norm. When T1 andT2 are bitvectors, we are more interested
in interpreting them as sets and in computing the Jaccard distance J(T1,T2) = ||T1 ∧T2||/||T1 ∨ T2|| =
||T1 ∧T2||/(||T1||+ ||T2||+ ||T1 ∧T2||), where ∧ and ∨ are the bitwise AND and OR operators, and where
|| · || measures the number of ones in a bitvector.

Given a data structure that supports rangeDistinct queries on the Burrows-Wheeler transform of each
string in input, we show that a number of popular string kernels, like the k-mer kernel, the substrings
kernels, a number of length-weighted kernels, the minimal absent words kernel, and kernels with Markovian

∗This work was partially supported by Academy of Finland under grant 250345 (Center of Excellence in Cancer Genetics
Research).

1

http://arxiv.org/abs/1502.06370v1


corrections, can all be computed in O(nd) time and in o(n) bits of space in addition to the input, all in
a single pass over the BWTs of the input strings, where d is the time taken by the rangeDistinct query
per element in its output. The same bounds hold for computing a number of measures of compositional
complexity for multiple values of k at the same time, like the k-mer profile and the k-th order empirical
entropy, and for choosing the value of k used in k-mer kernels from the data. All these algorithms become
O(n) using the rangeDistinct data structure described in [4], and concatenating this setup to the BWT
construction algorithm described in [3], we can compute all such kernels and complexity measures from the
input strings in randomized O(n) time and in O(n log σ) bits of space in addition to the input. Finally, we
show that measures of expectation based on Markov models are related to the left and right extensions of
maximal repeats.

2 Preliminaries

2.1 Strings

Let Σ = [1..σ] be an integer alphabet, let # = 0, #1 = −1 and #2 = −2 be distinct separators not in Σ,
and let T = [1..σ]n−1# be a string. We assume σ ∈ o(

√
n/ logn) throughout the paper. A k-mer is any

string W ∈ [1..σ] of length k > 0. We denote by fT (W ) the number of (possibly overlapping) occurrences of
a string W in the circular version of T , and we use the shorthand pT (W ) = fT (W )/(n− |W |) to denote an
approximation of the empirical probability of observing W in T , assuming that all positions of T except the
last |W | ones are equally probable starting positions for W . A repeat W is a string that satisfies fT (W ) > 1.
We denote by Σℓ

T (W ) the set of characters {a ∈ [0..σ] : fT (aW ) > 0} and by Σr
T (W ) the set of characters

{b ∈ [0..σ] : fT (Wb) > 0}. A repeat W is right-maximal (respectively, left-maximal) iff |Σr
T (W )| > 1

(respectively, iff |Σℓ
T (W )| > 1). It is well known that T can have at most n− 1 right-maximal substrings and

at most n−1 left-maximal substrings. A maximal repeat of T is a repeat that is both left- and right-maximal.
For reasons of space we assume the reader to be familiar with the notion of suffix tree STT of a string

T , and with the notion of generalized suffix tree of two strings, which we do not define here. We denote by
ℓ(v) the string label of a node v in a suffix tree. It is well known that a substring W of T is right-maximal
iff W = ℓ(v) for some internal node v of STT . We assume the reader to be familiar with the notion of suffix
link connecting a node v with ℓ(v) = aW for some a ∈ [0..σ] to a node w with ℓ(w) = W : we say that
w = suffixLink(v) in this case. Here we just recall that suffix links and internal nodes of STT form a tree,
called the suffix-link tree of T and denoted by SLTT , and that inverting the direction of all suffix links yields
the so-called explicit Weiner links. Given an internal node v and a symbol a ∈ [0..σ], it might happen that
string aℓ(v) does occur in T , but that it is not right-maximal, i.e. it is not the label of any internal node of
STT : all such left extensions of internal nodes that end in the middle of an edge are called implicit Weiner
links. An internal node v of STT can have more than one outgoing Weiner link, and all such Weiner links
have distinct labels: in this case, ℓ(v) is a maximal repeat. It is known that the number of suffix links (or,
equivalently, of explicit Weiner links) is upper-bounded by 2n− 2, and that the number of implicit Weiner
links can be upper-bounded by 2n− 2 as well.

2.2 Enumerating right-maximal substrings and maximal repeats

For reasons of space we assume the reader to be familiar with the notion and uses of the Burrows-Wheeler
transform of T , including the C array, the rank function, and backward searching. In this paper we use
BWTT to denote the BWT of T , we use range(W ) = [sp(W )..ep(W )] to denote the lexicographic interval
of a string W in a BWT that is implicit from the context, and we use Σi,j to denote the set of distinct
characters that occur inside interval [i..j] of a string that is implicit from the context. We also denote by
rangeDistinct(i, j) the function that returns the set of tuples {(c, rank(c, pc), rank(c, qc)) : c ∈ Σi,j}, where
pc and qc are the first and the last occurrence of c inside interval [i..j], respectively. Here we focus on a
specific application of BWTT : enumerating all the right-maximal substrings of T , or equivalently all the
internal nodes of STT . In particular, we use the algorithm described in [3] (Section 4.1), which we sketch

2



here for completeness.
Given a substring W of T , let b1 < b2 < · · · < bk be the sorted sequence of all the distinct char-

acters in Σr(W ), and let a1, a2, . . . , ah be the list of all the characters in Σℓ(W ), not necessarily sorted.
Assume that we represent a substring W of T as a pair repr(W ) = (chars[1..k], first[1..k + 1]), where
chars[i] = bi, range(Wbi) = [first[i]..first[i + 1] − 1] for i ∈ [1..k], and range() refers to BWTT . Note
that range(W ) = [first[1]..first[k + 1] − 1], since it coincides with the concatenation of the intervals of
the right extensions of W in lexicographic order. If W is not right-maximal, array chars in repr(W ) has
length one. Given a data structure that supports rangeDistinct queries on BWTT , and given the C array
of T , there is an algorithm that converts repr(W ) into the sequence a1, . . . , ah and into the corresponding
sequence repr(a1W ), . . . , repr(ahW ), in O(de) time and O(σ2 logn) bits of space in addition to the input
and the output [3], where d is the time taken by the rangeDistinct operation per element in its output,
and e is the number of distinct strings aiWbj that occur in the circular version of T , where i ∈ [1..h] and
j ∈ [1..k]. We encapsulate this algorithm into a function that we call extendLeft.

If aiW is right-maximal, i.e. if array chars in repr(aiW ) has length greater than one, we push pair
(repr(aiW ), |W | + 1) onto a stack S. In the next iteration we pop the representation of a string from the
stack and we repeat the process, until the stack itself becomes empty. This process is equivalent to following
all the explicit Weiner links from the node v of STT with ℓ(v) = W , not necessarily in lexicographic order.
Thus, running the algorithm from a stack initialized with repr(ε) is equivalent to performing a depth-first
(but not necessarily a preorder) traversal of the suffix-link tree of T , which guarantees to enumerate all the
right-maximal substrings of T . Every operation performed by the algorithm can be charged to a distinct
node or Weiner link of STT , thus the algorithm runs in O(nd) time. The depth of the stack is O(log n)
rather than O(n), since at every iteration we push the pair (repr(aiW ), |aiW |) with largest range(aiW )
first. Every suffix-link tree level in the stack contains at most σ pairs, and each pair takes at most σ logn
bits of space, thus the total space used by the stack is O(σ2 log2 n) bits. The following theorem follows from
our assumption that σ ∈ o(

√
n/ logn):

Theorem 1 ([3]). Let T ∈ [1..σ]n−1# be a string. Given a data structure that supports rangeDistinct

queries on BWTT , we can enumerate all the right-maximal substrings W of T , and for each of them we can
return |W |, repr(W ), the sequence a1, a2, . . . , ah of all characters in Σℓ

T (W ) (not necessarily sorted), and
the sequence repr(a1W ), . . . , repr(ahW ), in O(nd) time and in o(n) bits of space in addition to the input
and the output, where d is the time taken by the rangeDistinct operation per element in its output.

Theorem 1 does not specify the order in which the right-maximal substrings must be enumerated, nor
the order in which the left extensions of a right-maximal substring must be returned. The algorithm we just
described can be adapted to return all the maximal repeats of T , with the same bounds, by outputting a
right-maximal string W iff |rangeDistinct(sp(W ), ep(W ))| > 1. A version of the same algorithm can also
enumerate all the internal nodes of the generalized suffix tree of two string T 1 and T 2, using BWTT 1 and
BWTT 2 : in this case, a string W is represented as a quadruple repr′(W ) = (chars1[1..k1], first1[1..k1 +
1], chars2[1..k2], first2[1..k2 + 1]), and we assume that firsti[1] = 0 iff W does not occur in T i. We call
extendLeft′ the function that maps repr′(W ) to the list of its left extensions repr′(aiW ).

Theorem 2 ([3]). Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be two strings. Given two data struc-
tures that support rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, we can enumerate all the
right-maximal substrings W of T = T 1T 2, and for each of them we can return |W |, repr′(W ), the sequence
a1, a2, . . . , ah of all characters in Σℓ

T 1T 2(W ) (not necessarily sorted), and the sequence repr′(a1W ), . . . , repr′(ahW ),
in O(nd) time and in o(n) bits of space in addition to the input and the output, where n = n1 + n2 and d is
the time taken by the rangeDistinct operation per element in its output.

For reasons of space, we assume throughout the paper that d is the time per element in the output of a
rangeDistinct data structure that is implicit from the context. We also replace T i by i in subscripts, or
we waive subscripts completely whenever they are clear from the context.

3



3 Kernels and complexity measures on k-mers

Given a string T ∈ [1..σ]n−1# and a length k > 0, let vector Tk = [1..σk] be such that Tk[W ] = fT (W ) for
every W ∈ [1..σ]k. The k-mer complexity Ck(T ) of string T is the number of nonzero components of Tk.
The k-mer kernel of two strings T 1 and T 2 is κ(T1

k,T
2
k). Recall that Theorem 1 and 2 enumerate all nodes

of a suffix tree in no specific order. In this section we describe algorithms to compute Ck(T ) and κ(T1
k,T

2
k)

in a way that does not depend on the order in which the nodes of a suffix tree are enumerated: we can thus
implement such algorithms on top of Theorem 1 and 2. The main idea behind our approach is a telescoping
strategy that works by adding and subtracting terms in a sum, as described below:

Theorem 3. Let T ∈ [1..σ]n−1# be a string. Given an integer k and a data structure that supports
rangeDistinct queries on BWTT , we can compute Ck(T ) in O(nd) time and in o(n) bits of space in addition
to the input.

Proof. A k-mer of T can either be the label of a node of STT , or it could end in the middle of an edge (u, v)
of ST. In the latter case, we assume that the k-mer is represented by its locus v, which might be a leaf.
Let Ck(T ) be initialized to n− k, i.e. to the number of leaves that correspond to suffixes of T of length at
least k + 1. We enumerate the internal nodes of ST using Theorem 1, and every time we enumerate a node
v we proceed as follows: if |ℓ(v)| < k we leave Ck(T ) unaltered, otherwise we increment Ck(T ) by one and
we decrement Ck(T ) by the number of children of v in ST, which is the length of array chars in repr(ℓ(v)).
In this way, every internal node v of ST that is located at string depth at least k and that is not the locus
of a k-mer is both added to Ck(T ) (when the algorithm visits v) and subtracted from Ck(T ) (when the
algorithm visits parent(v)). Leaves at depth at least k + 1 that are not the locus of a k-mer are added by
the initialization of Ck(T ), and they are subtracted during the enumeration. Conversely, every locus v of a
k-mer of T (including leaves) is just added to Ck(T ), since |ℓ(parent(v))| < k.

We can apply the same telescoping strategy to compute κ(T1
k,T

2
k):

Theorem 4. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given an integer k and two data
structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, we can compute
κ(T1

k,T
2
k) in O(nd) time and in o(n) bits of space in addition to the input, where n = n1 + n2.

Proof. Recall that κ(T1
k,T

2
k) = N/

√
D1D2, where N =

∑

W T1
k[W ]T2

k[W ], Di =
∑

W Ti
k[W ]2, and W ∈

[1..σ]k. We initially set N = 0 and Di = ni − k, since these are the contributions of all the leaves at depth
at least k + 1 in the generalized suffix tree of T 1 and T 2. Then, we enumerate every internal node u of the
generalized suffix tree, using Theorem 2: if |ℓ(u)| < k we keep all variables unchanged, otherwise we set N
to N + f1(ℓ(u)) · f2(ℓ(u)) −

∑

v f1(ℓ(v)) · f2(ℓ(v)) and we set Di to Di + fi(ℓ(u))
2 −

∑

v fi(ℓ(v))
2, where v

ranges over all children of u in the generalized suffix tree. Clearly fi(ℓ(u)) = firsti[ki+1]−firsti[1] where
ki is the size of array charsi in repr′(ℓ(u)), and fi(ℓ(v)) = fi(ℓ(u)bj) = firsti[j + 1]− firsti[j] for some
j ∈ [1..ki]. In analogy to Lemma 3, the contribution of the loci of the distinct k-mers of T 1, of T 2, or of
both, is added to the three temporary variables and never subtracted, while the contribution of every other
node u at depth at least k in the generalized suffix tree is both added (when the algorithm visits u, or when
N and Di are initialized) and subtracted (when the algorithm visits parent(u)).

An even more specific notion of compositional complexity is Ck,f (T ), the number of distinct k-mers that
occur exactly f times in T . In the k-mer profiling problem [6, 7] we are given a string T , an interval [k1..k2] of
lengths and an interval [f1..f2] of frequencies, and we are asked to compute the matrix profile[k1..k2, f1..f2]
defined as follows: profile[i, j] = Ci,j(T ) if j < f2, and profile[i, j] =

∑

h≥j Ci,h(T ) if j = f2. Note that
column j of profile can have nonzero cells only if fj is the frequency of some internal node of STT . In
practice profile is often computed by running a k-mer extraction algorithm k2 − k1 + 1 times, and by
scanning the output of all such runs (see e.g. [6] and references therein). The following lemma shows that
we can compute profile in just one pass over the BWT of the input string, and in linear time in the size
of profile:

4



Theorem 5. Let T ∈ [1..σ]n−1# be a string. Given ranges [k1..k2] and [f1..f2], and given a data structure
that supports rangeDistinct queries on BWTT , we can compute matrix profile[k1..k2, f1..f2] in O(nd +
(k2 − k1)(f2 − f1)) time and in o(n) bits of space in addition to the input and the output.

Proof. We use Theorem 1 again. Assume that, for every internal node u of STT with string depth at least k1
and with frequency at least f1, and for every k ∈ [k1..min{|ℓ(v)|, k2}], we increment profile[k,min{f(u), f2}]
by one and we decrement profile[k,min{f(v), f2}] by one for every child v of u in ST such that f(v) ≥ f1.
This would take O(n2) total updates to profile. However, we can perform all of these updates in
batch, as follows: for every node u of ST with f(u) ≥ f1 and with |ℓ(u)| ≥ k1, we just increment
profile[min{|ℓ(u)|, k2}, min{f(u), f2}] by one, and we just decrement profile[min{|ℓ(u)|, k2}, min{f(v), f2}]
by one for every child v of u in ST such that f(v) ≥ f1. After having traversed all the internal nodes of
ST, we scan profile as follows: for every j ∈ [f1..f2], we traverse all values of i in the decreasing order
k2−1, . . . , k1, and we set profile[i, j] = profile[i, j]+profile[i+1, j]. If f1 = 1, at the end of this process
the first column of profile contains negative numbers, since Theorem 1 does not enumerate the leaves of
ST. Thus, before returning, we add to profile[i, 1] the number of leaves with string depth at least ki + 1,
i.e. value n− ki, for all i ∈ [k1..k2].

A similar algorithm allows computing κ(T1
k,T

2
k) for all k in a user-specified range [k1..k2] inO(nd+k2−k1)

time. Matrix profile can be used to determine a range of values of k to be used in k-mer kernels. The
smallest number in this range is typically the value of k that maximizes the number of distinct k-mers that
occur at least twice in T [15]. The largest number in the range is typically determined using some measure
of expectation: we cover this computation in Section 5.

A related notion of compositional complexity is the k-th order empirical entropy of T , defined as Hk(T ) =
(1/|T |) · ∑W

∑

a∈Σr(W ) fT (Wa) · log(fT (W )/fT (Wa)), where W ranges over all strings in [1..σ]k. Clearly

only the internal nodes of STT contribute to some Hk(T ) [9], thus our methods allow computing Hk(T ) for
a user-specified range of lengths [k1..k2] in O(nd) time, using just one pass over BWTT .

4 Kernels and complexity measures on all substrings

Given a string T ∈ [1..σ]n−1#, consider the infinite-dimensional vector T∞ indexed by all distinct substrings
W ∈ [1..σ]+, such that T∞[W ] = fT (W ). The substring complexity C∞(T ) of T is the number of nonzero
components of T∞. The substring kernel of two strings T 1 and T 2 is the cosine of composition vectors T1

∞

and T2
∞. Computing substring complexity and substring kernel amounts to applying the same telescoping

strategy described in Theorem 3 and 4, but with different contributions:

Corollary 1. Let T ∈ [1..σ]n−1# be a string. Given a data structure that supports rangeDistinct queries
on BWTT , we can compute C∞(T ) in O(nd) time and in o(n) bits of space in addition to the input.

Proof. The substring complexity of T coincides with the number of characters in [1..σ] that occur on all
edges of STT . We can thus proceed as in Lemma 3, initializing C∞(T ) to (n− 1)n/2, or equivalently to the
sum of the lengths of all suffixes of T [1..n − 1]. Whenever we visit a node v of ST, we add to C∞(T ) the
quantity |ℓ(v)|, and we subtract from C∞(T ) the quantity |ℓ(v)| · |children(v)|. The net effect of all such
operations coincides with summing the lengths of all edges of ST, discarding all occurrences of character #.
Note that |ℓ(u)| is provided by Theorem 1, and |children(v)| is the size of array chars in repr(ℓ(v)).

Corollary 2. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given data structures that support
rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, we can compute κ(T1

∞,T2
∞) in O(nd) time

and in o(n) bits of space in addition to the input, where n = n1 + n2.

Proof. We proceed as in Theorem 4, setting again N = 0 and Di = (ni − 1)ni/2 at the beginning of the
algorithm. When we visit a node u of the generalized suffix tree of T 1 and T 2, we set N to N + |ℓ(u)| ·
(f1(ℓ(u))f2(ℓ(u)) −

∑

v f1(ℓ(v))f2(ℓ(v))) and we set Di to Di + |ℓ(u)| · (fi(ℓ(u))2 −
∑

v fi(ℓ(v))
2), where v

ranges over all children of u in the generalized suffix tree.

5



In a substring kernel it is common to weight a substring W by a user-specified function of its length:
typical choices are ǫ|W | for a given constant ǫ, or indicators that select only substrings within a specific
range of lengths [16]. We denote by Ti

∞,g a weighted version of the infinite-dimensional vector Ti
∞ in which

Ti
∞[W ] = g(|W |) · fT i(W ) and where g is any user-specified function. We assume that the number of bits

required to represent the output of g with sufficient precision is O(log n). It is easy to adapt Corollary 2 to
support this type of composition vector:

Corollary 3. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given a function g(k) that can be
evaluated in constant time, and given data structures that support rangeDistinct queries on BWTT 1 and
on BWTT 2 , respectively, we can compute κ(T1

∞,g,T
2
∞,g) in O(nd) time and in o(n) bits of space in addition

to the input, where n = n1 + n2.

Proof. We modify Corollary 2 as follows. Assume that we are processing an internal node v of the generalized
suffix tree, let ℓ(v) = W , and assume that we have computed repr′(aW ) for all the left extensions aW of

W . In addition to pushing repr′(aW ) onto the stack, we also push value prefixSum(aW ) =
∑|W |+1

i=1 g(i)2

with it, where prefixSum(aW ) = prefixSum(W ) + g(|W |+ 1)2. When we pop repr′(aW ), we compute its
contributions to N and Di as described in Corollary 2, but replacing |aW | by prefixSum(aW ). We initialize

Di to
∑ni−1

j=1 g(j)2.

Corollary 3 can clearly support distinct weight functions for T 1 and T 2. For some functions, like ǫ|W |,
prefix sums can be computed in closed form [16], thus there is no need to push prefixSum values on the
stack. Another frequent weighting scheme for a string W associates a score q(c) to every character c of

W , and it weights W by e.g. q(W ) =
∏|W |

i=1 q(W [i]). In this case we could just push prefixSum(V ) =
∑|V |

i=1

∏i

j=1 q(V [j])2 onto the stack, where V = aW and prefixSum(V ) = q(a)2 · (1 + prefixSum(W )). A
similar weighting scheme can be used for k-mers as well. Let Tk,q be a version of Tk such that Tk,q [W ] =
fT (W )− (|T | − |W |)q(W ) for every W ∈ [1..σ]k, and consider the following distances defined in [13]:

Ds
2(T

1
k,q,T

2
k,q) =

∑

W

T1
k,q [W ]T2

k,q [W ]/
√

(T1
k,q [W ])2 + (T2

k,q [W ])2

D∗
2(T

1
k,q,T

2
k,q) =

∑

W

T1
k,q [W ]T2

k,q [W ]/
(

√

(n1 − k)(n2 − k) · q(W )
)

where W ranges over all strings in [1..σ]k. We can compute such distances using just a minor modification
to Theorem 4:

Corollary 4. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given an integer k and data
structures that support rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, we can compute
Ds

2(T
1
k,p,T

2
k,p) and D∗

2(T
1
k,p,T

2
k,p) in O(nd) time and in λ log σ+ o(n) bits of space in addition to the input,

where n = n1 + n2 and λ is the length of the longest repeat in T 1T 2.

Proof. We proceed as in Theorem 4, pushing on the stack value q(W,k) =
∏k

j=1 q(W [j]) in addition to
repr′(W ), and maintaining a separate stack of characters to represent the string we are processing during
the depth-first traversal of the generalized suffix-link tree. We set q(aW, k) = q(a) · q(W,k)/q(b), where b is
the kth character from the top of the character stack when we are processing W .

An orthogonal way to measure the similarity between T 1 and T 2 consists in comparing the repertoire of
all strings that do not appear in T 1 and in T 2. Given a string T and two frequency thresholds τ1 < τ2, a
string W is a minimal rare word of T if τ1 ≤ fT (W ) < τ2 and if fT (V ) ≥ τ2 for every proper substring V
of W . Setting τ1 = 0 and τ2 = 1 gives the well-known minimal absent words (see e.g. [10, 5] and references
therein), whose total number can be Θ(σn) [8]. Setting τ1 = 1 and τ2 = 2 gives the so-called shortest
unique substrings (see e.g. [11] and references therein), whose total number is O(n), like the number of
strings obtained by any other setting of τ1 ≥ 1. In what follows we focus on minimal absent words, but our
algorithms can be generalized to other settings of the thresholds.

6



To decide whether aWb is a minimal absent word of T , where a and b are characters, it clearly suffices
to check whether fT (aWb) = 0 and whether both fT (aW ) ≥ 1 and fT (Wb) ≥ 1. It is well known that only
a maximal repeat of T can be the infix W of a minimal absent word aWb, and this applies to any setting of
τ1 and τ2. To enumerate all the minimal absent words, for example to count their total number C−(T ), we
can thus iterate over all nodes of STT associated with maximal repeats, as described below:

Theorem 6. Let T ∈ [1..σ]n−1# be a string. Given a data structure that supports rangeDistinct queries
on BWTT , we can compute C−(T ) in O(nd) time and in o(n) bits of space in addition to the input.

Proof. For clarity, we first describe how to enumerate all the distinct minimal absent words of T : we specialize
this algorithm to counting at the end of the proof. We use Theorem 1 to enumerate all nodes v of STT

associated with maximal repeats, as described in Section 2.2. Let {a1, . . . , ah} be the set of distinct left
extensions of string ℓ(v) in T returned by operation extendLeft(repr(v)), let extensions[1..σ + 1, 0..σ]
be a boolean matrix initialized to all zeros, and let leftExtensions[1..σ + 1] be an array initialized to
all zeros. Let h′ be a pointer initialized to one. Operation extendLeft allows following all the Weiner
links from v, not necessarily in lexicographic order: for every string aiℓ(v) obtained in this way, we set
leftExtensions[h′] = ai, we enumerate its right extensions {c1, . . . , ck′} using array chars of repr(aiℓ(v)),
we set extensions[h′, cj ] = 1 for all j ∈ [1..k′], and we finally increment h′ by one. Note that only the
columns of extensions that correspond to the right extensions of ℓ(v) are updated by this procedure. Then,
we enumerate all the right extensions {b1, . . . , bk} of ℓ(v) using array chars of repr(ℓ(v)), and for every such
extension bj we report all pairs (ai, bj) such that ai = chars[x], x ∈ [1..h′], and extensions[x, bj ] = 0. This
process takes time proportional to the number of Weiner links from v, plus the number of children of v, plus
the number of Weiner links from v multiplied by σ. When applied to all nodes of ST, this takes in total
O(nσ) time, which is optimal in the size of the output. The matrices and vectors used by this process can
be reset to all zeros after processing each node: the total time spent in such reinitializations in O(n).

If we just need C−(T ), rather than storing the temporary matrices extensions and leftExtensions,
we store just a number area which we initialize to hk before processing node v. Whenever we observe a
right extension cj of a string aiℓ(v), we decrease area by one. Before moving to the next node, we increment
C−(T ) by area.

Let T− be the infinite-dimensional vector indexed by all distinct substrings W ∈ [1..σ]+, such that
T−[W ] = 1 iff W is a minimal absent word of T . Theorem 6 can be adapted to compute the Jaccard
distance between the composition vectors of two strings:

Corollary 5. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given data structures that support
rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, we can compute J(T1

−,T
2
−) in O(nd) time

and in o(n) bits of space in addition to the input, where n = n1 + n2.

Proof. We apply the strategy of Theorem 6 to the internal nodes of the generalized suffix tree of T 1 and
T 2 whose label is a maximal repeat of T 1 and a maximal repeat of T 2: such strings are clearly maximal
repeats of T 1T 2 as well. We enumerate such nodes as described in Section 2.2. We keep a global variable
intersection and a bitvector sharedRight[1..σ]. For every node v that corresponds to a maximal repeat
of T 1 and of T 2, we merge the sorted arrays chars1 and chars2 of repr′(ℓ(v)), we set sharedRight[c] = 1
for every character c that belongs to the intersection of the two arrays, and we cumulate in a variable k′

the number of ones in sharedRight. Then, we scan every left extension ai provided by extendLeft′, we
determine in constant time whether it occurs in both T 1 and T 2, and if so we increment a variable h′ by
one. Finally, we initialize a variable area to h′k′, and we process again every left extension ai provided by
extendLeft′: if aiℓ(v) occurs in both T 1 and T 2, we compute the union of arrays chars1 and chars2 of
repr′(aiℓ(v)), and for every character c in the union such that sharedRight[c] = 1, we decrement area by
one. At the end of this process, we add area to the global variable intersection. To compute ||T1

− ∨T2
−||

we apply Theorem 6 to T 1 and T 2 separately.

It is easy to extend Corollary 5 to compute κ(T1
−,T

2
−), as well as to support weighting schemes based

on the length and on the characters of minimal absent words.

7



5 Markovian corrections

In some applications it is desirable to assign to component W ∈ [1..σ]k of composition vector T∞ an estimate
of the statistical significance of observing fT (W ) occurrences of W in T : intuitively, strings whose frequency
departs from its expected value are more likely to carry “information”, and they should be weighted more
[12]. Assume that T is generated by a Markov random process of order k−2 or smaller, that produces strings
on alphabet [1..σ] according to a probability distribution P. It is well known that the probability of observing
W in a string generated by such random process is P(W ) = P(W [1..k − 1]) · P(W [2..k])/P(W [2..k− 1]). We
can estimate P(W ) using the empirical probability pT (W ), obtaining the following approximation for P(W ):
p̃T (W ) = pT (W [1..k − 1]) · pT (W [2..k])/pT (W [2..k − 1]) if pT (W [2..k − 1]) 6= 0, and p̃T (W ) = 0 otherwise.
We can thus estimate the significance of the event that substring W has empirical probability pT (W ) in
string T using the following score: zT (W ) = (pT (W ) − p̃T (W ))/p̃T (W ) if p̃T (W ) 6= 0, and zT (W ) = 0 if
p̃T (W ) = 0 [12]. After elementary manipulations [2], zT (W ) becomes:

zT (W ) = g(n, k) · fT (W ) · fT (W [2..k − 1])

fT (W [1..k − 1]) · fT (W [2..k])
− 1

g(x, y) = (x− y + 2)2/(x− y + 1)(x− y + 3)

Since g(x, y) ∈ [1..1.125], we temporarily assume g(x, y) = 1 in what follows, removing this assumption later.
Let Tz be a version of the infinite-dimensional vector T∞ in which Tz[W ] = zT (W ). Among all strings

that occur in T , only strings aWb such that a and b are characters in [0..σ] and such that W is a maximal
repeat of T can have Tz[aWb] 6= 0. Similarly, among all strings that do not occur in T , only the minimal
absent words of T have a nonzero component in Tz : specifically, Tz [aWb] = −1 for all minimal absent words
aWb of T , where a and b are characters in [0..σ] [2]. Given two strings T 1 and T 2, we can thus compute
κ(T1

z ,T
2
z) using the same strategy as in Corollary 5:

Theorem 7. Let T 1 ∈ [1..σ]n1−1#1 and T 2 ∈ [1..σ]n2−1#2 be strings. Given data structures that support
rangeDistinct queries on BWTT 1 and on BWTT 2 , respectively, and assuming g(x, y) = 1 for all settings of
x and y, we can compute κ(T1

z ,T
2
z) in O(nd) time and in o(n) bits of space in addition to the input, where

n = n1 + n2.

Proof. We focus here on computing component N of κ(T1
z ,T

2
z): computing Di follows a similar algorithm

on BWTT i . We keep again a bitvector sharedRight[1..σ], and we enumerate all the internal nodes of the
generalized suffix tree of T 1 and T 2 whose label is a maximal repeat of T 1T 2, as described in Section 2.2. For
every such node v, we merge the sorted arrays chars1 and chars2 of repr′(ℓ(v)), we set sharedRight[c] = 1
for every character c that belongs to the intersection of the two arrays, and we cumulate in a variable k′

the number of ones in sharedRight. Then, we scan every left extension ai provided by extendLeft′, we
determine in constant time whether it occurs in both T 1 and T 2, and if so we increment a variable h′ by
one. Finally, we initialize a variable area to h′k′, and we process again every left extension ai provided
by extendLeft′. If aiℓ(v) occurs in both T 1 and T 2, we merge arrays chars1 and chars2 of repr′(aiℓ(v)):
for every character b in the intersection of chars1 and chars2, we add to N value z1(aiℓ(v)b) · z2(aiℓ(v)b),
retrieving the corresponding frequencies from repr′(aiℓ(v)) and from repr′(ℓ(v)), and we decrement area
by one. For every character b that occurs only in chars1, we test whether sharedRight[b] = 1: if so, aiWb
is a minimal absent word of T 2 that occurs in T 1, thus we decrement area by one and we add to N value
−z1(aiℓ(v)b). We proceed symmetrically if b occurs only in chars2. At the end of this process, area counts
the number of minimal absent words with infix ℓ(v) that are shared by T 1 and T 2: thus, we add area to
N .

It is easy to remove the assumption that g(x, y) is always equal to one. There are only two differences
from the previous case. First, the score of the substrings W of T i that have a maximal repeat of T i as an
infix changes, but g(ni, |W |) can be immediately computed from |W |, which is included in both repr(W )
and repr′(W ). Second, the score of all substrings W of T i that do not have a maximal repeat as an infix
changes from zero to g(ni, |W |)− 1: we can take into account all such contributions by pushing prefix-sums

8



to the stack, as in Corollary 3. For example, to compute component N of κ(T1
z ,T

2
z), we can first assume

that all substring W that occur both in T 1 and in T 2 have score g(ni, |W |)− 1, by pushing to the stack the
prefix-sums described in [2] and by enumerating only nodes v of the generalized suffix tree of T 1 and T 2 such
that ℓ(v) occurs both in T 1 and in T 2. Then, we can run the algorithm in Theorem 7, subtracting quantity
(g(n1, |W |+ 2)− 1) · (g(n2, |W |+ 2)− 1) from the contribution to N of every string aiWb that occurs both
in T 1 and in T 2.

Finally, recall that in Section 3 we mentioned the problem of determining an upper bound on the values
of k to be used in k-mer kernels. Let Tk be the composition vector indexed by all strings in [1..σ]k such that
Tk[W ] = pT (W ), and let T̃k be a similar composition vector with T̃k[W ] = p̃T (W ), where p̃T (W ) is defined
as in the beginning of this section. It makes sense to disregard values of k for which Tk and T̃k are very
similar, and more formally whose Kullback-Leibler divergence KL(Tk, T̃k) =

∑

W Tk[W ] · (log(Tk[W ]) −
log(T̃k[W ])) is small, where W ranges over all strings in [1..σ]k. Thus, we could use as an upper bound on k
the minimum value k∗ such that

∑∞
k′=k∗ KL(Tk′ , T̃k′) < τ for some user-specified threshold τ [15]. Note again

that only strings aWb such that a and b are characters in [0..σ] and W is a maximal repeat of T contribute to
KL(T|W |+2, T̃|W |+2). We can thus adapt Theorem 7 to compute the KL divergence for a user-specified range
of lengths [k1..k2], using just one pass over BWTT , in O(nd) time and in o(n) bits of space in addition to the
input and the output. The same approach can be used to compute the KL-divergence kernel κ(T1

KL,T
2
KL),

where Ti
KL[W ] = KLT i(W ) and KLT i(W ) =

∑

a,b∈Σ pT i(aWb) · (log(pT i(aWb))− log(p̃T i(aWb))).

References

[1] Alberto Apostolico. Maximal words in sequence comparisons based on subword composition. In Algo-
rithms and Applications, pages 34–44. Springer, 2010.

[2] Alberto Apostolico and Olgert Denas. Fast algorithms for computing sequence distances by exhaustive
substring composition. Algorithms for Molecular Biology, 3(1):13, 2008.

[3] Djamal Belazzougui. Linear time construction of compressed text indices in compact space. In Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
148–193, 2014.

[4] Djamal Belazzougui, Gonzalo Navarro, and Daniel Valenzuela. Improved compressed indexes for full-
text document retrieval. Journal of Discrete Algorithms, 18:3–13, January 2013.

[5] Supaporn Chairungsee and Maxime Crochemore. Using minimal absent words to build phylogeny.
Theoretical Computer Science, 450:109–116, 2012.

[6] Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size selection for genome assembly.
Bioinformatics, 30(1):31–37, 2014.

[7] Benny Chor, David Horn, Nick Goldman, Yaron Levy, Tim Massingham, et al. Genomic DNA k-mer
spectra: models and modalities. Genome Biology, 10(10):R108, 2009.

[8] Maxime Crochemore, Filippo Mignosi, and Antonio Restivo. Automata and forbidden words. Informa-
tion Processing Letters, 67(3):111–117, 1998.

[9] Simon Gog. Compressed suffix trees: Design, construction, and applications. PhD thesis, University of
Ulm, Germany, 2011.

[10] Julia Herold, Stefan Kurtz, and Robert Giegerich. Efficient computation of absent words in genomic
sequences. BMC Bioinformatics, 9(1):167, 2008.

[11] Atalay Mert Ileri and Bojian Xu. Shortest unique substring query revisited. In Combinatorial Pattern
Matching, pages 172–181, 2014.

9



[12] Ji Qi, Bin Wang, and Bai-Iin Hao. Whole proteome prokaryote phylogeny without sequence alignment:
a k-string composition approach. Journal of Molecular Evolution, 58(1):1–11, 2004.

[13] Gesine Reinert, David Chew, Fengzhu Sun, and Michael S Waterman. Alignment-free sequence com-
parison (I): statistics and power. Journal of Computational Biology, 16(12):1615–1634, 2009.

[14] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university
press, 2004.

[15] Gregory E Sims, Se-Ran Jun, Guohong A Wu, and Sung-Hou Kim. Alignment-free genome comparison
with feature frequency profiles (FFP) and optimal resolutions. Proceedings of the National Academy of
Sciences, 106(8):2677–2682, 2009.

[16] Alex J. Smola and S.v.n. Vishwanathan. Fast kernels for string and tree matching. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages
585–592. MIT Press, 2003.

10


	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Enumerating right-maximal substrings and maximal repeats

	3 Kernels and complexity measures on k-mers
	4 Kernels and complexity measures on all substrings
	5 Markovian corrections

