Skip to main content

Parameterized Facial Modelling and Animation

  • Chapter
  • First Online:
Context Aware Human-Robot and Human-Agent Interaction

Part of the book series: Human–Computer Interaction Series ((HCIS))

  • 1668 Accesses

Abstract

Facial modelling is a fundamental technique in a variety of applications in computer graphics, computer vision and pattern recognition areas. As 3D technologies evolved over the years, the quality of facial modelling greatly improved. To enhance the modelling quality and controllability of the model further, parametric methods, which represent or manipulate facial attributes (e.g. identity, expression, viseme) with a set of control parameters, have been proposed in recent years. The aim of this chapter is to give a comprehensive overview of current state-of-the-art parametric methods for realistic facial modelling and animation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amberg B (2007) Optimal step nonrigid ICP algorithms for surface registration. In CVPR07

    Google Scholar 

  2. Barron JT, Malik J (2013) Shape, illumination, and reflectance from shading. Technical Report UCB/EECS-2013-117, EECS, UC Berkeley, May 2013

    Google Scholar 

  3. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  4. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing Company, New York, USA, pp 187–194

    Google Scholar 

  5. Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074

    Article  Google Scholar 

  6. Cao C, Weng Y, Lin S, Zhou K (2013) 3d shape regression for real-time facial animation. ACM Trans Graph 32(4):41:1–41:10

    Google Scholar 

  7. Cao C, Weng Y, Zhou S, Tong Y, Zhou Kun (2014) Facewarehouse: a 3D facial expression database for visual computing. IEEE Trans Visual Comput Graphics 20(3):413–425

    Article  Google Scholar 

  8. Cao X, Wei Y, Wen F, Sun J (2012) Face alignment by explicit shape regression. In: CVPR 2012

    Google Scholar 

  9. Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: Burkhardt H, Neumann B (eds) Computer vision ECCV 98. Lecture notes in computer science, vol 1407. Springer, Berlin, pp 484–498

    Google Scholar 

  10. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vision Image Underst 61(1):38–59

    Article  Google Scholar 

  11. Ekman P, Friesen W (1978) Facial action coding system: a technique for the measurement of facial movement. Consulting Psychologists Press, Palo Alto

    Google Scholar 

  12. Fyffe G, Jones A, Alexander O, Ichikari R, Graham P, Nagano K, Busch J, Debevec P (2013) Driving high-resolution facial blendshapes with video performance capture. In: ACM SIGGRAPH 2013 Talks, SIGGRAPH ’13. ACM, New York, NY, New York, pp 33:1–33:1

    Google Scholar 

  13. Garrido P, Valgaert L, Wu C, Theobalt C (2013) Reconstructing detailed dynamic face geometry from monocular video. ACM Trans Graph 32(6):158:1–158:10

    Google Scholar 

  14. Ghosh A, Fyffe G, Tunwattanapong B, Busch J, Yu X, Debevec P (2011) Multiview face capture using polarized spherical gradient illumination. In: Proceedings of the 2011 SIGGRAPH Asia conference, SA ’11. ACM, New York, NY, USA, pp 129:1–129:10

    Google Scholar 

  15. Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges S, Freeman D, Davison A, Fitzgibbon A (2011) Kinectfusion: Real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on user interface software and technology

    Google Scholar 

  16. Kemelmacher-Shlizerman L, Seitz SM (2011) Face reconstruction in the wild. In: IEEE computer society proceedings of the 2011 international conference on computer vision, ICCV ’11, Washington, DC, USA, pp 1746–1753

    Google Scholar 

  17. Kim IJ, Ko H-S (2007) Intuitive quasi-eigen faces. In: ACM international conference on computer graphics and interactive techniques in Australasia and Southeast Asia, December 2007

    Google Scholar 

  18. Knothe R (2009) A Global-to-local model for the representation of human faces. PhD thesis, University of Basel, June 2009

    Google Scholar 

  19. Li H, Sumner RW, Pauly M (2008) Global correspondence optimization for non-rigid registration of depth scans. In: proceedings of the symposium on geometry processing SGP ’08, Aire-la-Ville, Switzerland, Eurographics Association, pp 1421–1430

    Google Scholar 

  20. Li H, Weise T, Pauly M (2010) Example-based facial rigging. In: ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10. ACM, New York, NY, USA, pp 32:1–32:6

    Google Scholar 

  21. Li H, Yu J, Ye Y, Bregler C (2013) Realtime facial animation with on-the-fly correctives. ACM Trans Graph 32(4):42:1–42:10

    Google Scholar 

  22. Neumann T, Varanasi K, Wenger K, Wacker M, Magnor M, Theobalt C (2013) Sparse localized deformation components. ACM Trans Graph 32(6):179:1–179:10

    Google Scholar 

  23. Parke FI (1972) Computer generated animation of faces. In: Proceedings of the ACM annual conference, vol 1, ACM ’72. ACM, New York, NY, USA, pp 451–457

    Google Scholar 

  24. Pighin F, Hecker J, Lischinski D, Szeliski R, Salesin DH (1998) Synthesizing realistic facial expressions from photographs. In: Proceedings of SIGGRAPH, pp 75–84

    Google Scholar 

  25. Praun E, Sweldens W, Schröder P (2001) Consistent mesh parameterizations. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, SIGGRAPH ’01. ACM, New York, NY, USA, pp 179–184

    Google Scholar 

  26. Ramanan D, Zhu X (2012) Face detection, pose estimation, and landmark localization in the wild. In: 2013 IEEE conference on computer vision and pattern recognition, pp 0:2879–2886

    Google Scholar 

  27. Saragih JM, Lucey S, Cohn JF (2011) Deformable model fitting by regularized landmark mean-shift. Int J Comput Vision 91(2):200–215

    Article  MATH  MathSciNet  Google Scholar 

  28. Schüller C, Kavan L, Panozzo D, Sorkine-Hornung O (2013) Locally injective mappings. In: Computer Graphics forum proceedings of EUROGRAPHICS/ACM SIGGRAPH symposium on geometry processing 32(5):125–135

    Google Scholar 

  29. Sorkine O, Alexa M (2007) As-rigid-as-possible surface modeling. In: Proceedings of EUROGRAPHICS/ACM SIGGRAPH symposium on geometry processing, pp 109–116

    Google Scholar 

  30. Sorkine O, Cohen-Or D, Lipman Y, Christian Rössl AM, Seidel HP (2004) Laplacian surface editing. In: Proceedings of the EUROGRAPHICS/ACM SIGGRAPH symposium on geometry processing. ACM Press, New York, pp 179–188

    Google Scholar 

  31. Sumner RW, Popović J (2009) Deformation transfer for triangle meshes. In: ACM SIGGRAPH 2004 papers, SIGGRAPH ’04. ACM, New York, NY, USA, pp 399–405

    Google Scholar 

  32. Sumner RW, Schmid J, Pauly M (2007) Embedded deformation for shape manipulation. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07. ACM, New York, NY, USA

    Google Scholar 

  33. Valgaerts L, Wu C, Bruhn A, Seidel H-P, Theobalt C (2012) Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans Graph 31(6):187:1–187:11

    Google Scholar 

  34. Vlasic D, Brand M, Pfister H, Popović J (2005) Face transfer with multilinear models. ACM Trans Graph 24(3):426–433

    Article  Google Scholar 

  35. Weise T, Bouaziz S, Li H, Pauly M (2011) Realtime performance-based facial animation. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11. ACM, New York, NY, USA, pp 77:1–77:10

    Google Scholar 

  36. Xiong X, De la Torre F (2013) Supervised descent method and its applications to face alignment. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR), pp 532–539, June 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghyun Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cho, J., Choi, H., Ahn, S.C., Kim, IJ. (2016). Parameterized Facial Modelling and Animation. In: Magnenat-Thalmann, N., Yuan, J., Thalmann, D., You, BJ. (eds) Context Aware Human-Robot and Human-Agent Interaction. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-19947-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19947-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19946-7

  • Online ISBN: 978-3-319-19947-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics