Skip to main content

Responsive Motion Generation

  • Chapter
  • First Online:
Context Aware Human-Robot and Human-Agent Interaction

Part of the book series: Human–Computer Interaction Series ((HCIS))

  • 1642 Accesses

Abstract

In this chapter, we discuss the generation of natural behaviors of humanoids (virtual human characters in particular) responsive to the physical interaction with the user such as push and pull. These physical interactions play an important role for increasing the level of immersion of the user and lay foundations for more advanced level of interactions. One of the key components for physical interaction is the generation of suitable balancing behaviors of humanoids against user inputs. We review three major approaches for humanoid balancing, namely the ZMP-based methods, data-driven methods, and momentum-based methods. For each method, we discuss its basic ideas and principles, exemplar work, as well as important future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah M, Goswami A (2005) A biomechanically motivated two-phase strategy for biped upright balance control. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA ’05, pp 1996–2001

    Google Scholar 

  2. Abe Y, da Silva M, Popović J (2007) Multiobjective control with frictional contacts. In: Proceedings of the ACM SIGGRAPH Eurographics symposium on computer animation 2007, Eurographics Association, pp 249-258

    Google Scholar 

  3. Featherstone R (1987) Robot dynamics algorithm. Kluwer Academic Publishers, Boston

    Google Scholar 

  4. Geijtenbeek T, Pronost N, van der Stappen F (2012) Simple data-driven control for simulated bipeds. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation 2012, Eurographics Association, pp 211–219

    Google Scholar 

  5. Golliday CL Jr, Hemami H (1976) Postural stability of the two-degree-of-freedom biped by general linear feedback. IEEE Trans Autom Control 21(1):74–79

    Article  MATH  Google Scholar 

  6. Ha S, Ye Y, Liu CK (2012) Falling and landing motion control for character animation. ACM Trans Graph 31(6):155:1–155:9

    Google Scholar 

  7. Kajita S, Harada K, Hirukawa H, Yokoi K (2014) Introduction to humanoid robotics. Springer, New York

    Google Scholar 

  8. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In: Proceedings of 2003 IEEE/RSJ international conference on intelligent robots and systems, IROS ’03, pp 1644–1650

    Google Scholar 

  9. Kajita S, Kanehiro F, Kaneko K, Yokoi K, Hirukawa H (2001) The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: Proceedings of 2001 IEEE/RSJ international conference of intelligent robots and systems, IROS ’01, pp 239–246

    Google Scholar 

  10. Lee S-H, Goswami A (2012) A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton Robots 33(4):399–414

    Article  Google Scholar 

  11. Liu L, Yin K, van de Panne M, Shao T, Xu W (2010) Sampling-based contact-rich motion control. ACM Trans Graph 29(4):128:1–128:10

    Google Scholar 

  12. Macchietto A, Zordan VB, Shelton CR (2009) Momentum control for balance. ACM Trans Graph 28(3):80:1–80:8

    Google Scholar 

  13. Nam HN, Arista CR, Karen L, Victor BZ (2012) Adaptive dynamics with hybrid response. In: SIGGRAPH Asia technical briefs 5(1–5):4

    Google Scholar 

  14. Orin DE, Goswami A, Lee S-H (2013) Centroidal dynamics of a humanoid robot. Auton Robots 35(2–3):161–176

    Article  Google Scholar 

  15. Pratt J, Chew C-M, Torres A, Dilworth P, Pratt G (2001) Virtual model control: an intuitive approach for bipedal locomotion. Int J Robot Res 20(2):129–143

    Article  Google Scholar 

  16. Vukobratovic M (1990) Biped locomotion. Springer, New York

    Google Scholar 

  17. Vukobratovic M, Frank AA, Juricic D (1970) On the stability of biped locomotion. IEEE Trans Biomed Eng 17(1):25–36

    Article  Google Scholar 

  18. Wu C-C, Zordan VB (2010) Goal-directed stepping with momentum control. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, pp 113–118

    Google Scholar 

  19. Yin K, Pai DK, van de Panne M (2005) Data-driven interactive balancing behaviors. In: Proceedings of the 13th Pacific conference on computer graphics and applications, Pacific Graphics ’05, pp 118–121

    Google Scholar 

  20. Yun S, Goswami A (2011) Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery. In: Proceedings of 2011 IEEE/RSJ international conference on intelligent robots and systems, IROS ’11, pp 3943–3950

    Google Scholar 

  21. Zordan VB, Majkowska A, Chiu B, Fast M (2005) Dynamic response for motion capture animation. ACM Trans Graph, pp 697–701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, S., Lee, SH. (2016). Responsive Motion Generation. In: Magnenat-Thalmann, N., Yuan, J., Thalmann, D., You, BJ. (eds) Context Aware Human-Robot and Human-Agent Interaction. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-19947-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19947-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19946-7

  • Online ISBN: 978-3-319-19947-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics