Skip to main content

Colocalization Estimation Using Graphical Modeling and Variational Bayesian Expectation Maximization: Towards a Parameter-Free Approach

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

In microscopy imaging, colocalization between two biological entities (e.g., protein-protein or protein-cell) refers to the (stochastic) dependencies between the spatial locations of the two entities in the biological specimen. Measuring colocalization between two entities relies on fluorescence imaging of the specimen using two fluorescent chemicals, each of which indicates the presence/absence of one of the entities at any pixel location. State-of-the-art methods for estimating colocalization rely on post-processing image data using an adhoc sequence of algorithms with many free parameters that are tuned visually. This leads to loss of reproducibility of the results. This paper proposes a brand-new framework for estimating the nature and strength of colocalization directly from corrupted image data by solving a single unified optimization problem that automatically deals with noise, object labeling, and parameter tuning. The proposed framework relies on probabilistic graphical image modeling and a novel inference scheme using variational Bayesian expectation maximization for estimating all model parameters, including colocalization, from data. Results on simulated and real-world data demonstrate improved performance over the state of the art.

We thank funding via the IIT Bombay Seed Grant 14IRCCSG010 and T. Liou for the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, J., Parmryd, I.: Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry A 77(8), 733–42 (2010)

    Article  Google Scholar 

  2. Awate, S.P., Whitaker, R.T.: Multiatlas segmentation as nonparametric regression. IEEE Trans. Med. Imaging 33(9), 1803–1817 (2014)

    Article  Google Scholar 

  3. Awate, S.P., Zhang, H., Gee, J.C.: A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI tract extraction. IEEE Trans. Med. Imaging 26(11), 1525–1536 (2007)

    Article  Google Scholar 

  4. Batada, N., Shepp, L., Siegmund, D.: Stochastic model of protein-protein interaction: why signaling proteins need to be colocalized. Proc. Nat. Acad. Sci. 101(17), 6445–6449 (2004)

    Article  Google Scholar 

  5. Beal, M., Ghahramani, Z.: The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayesian Stat. 7, 453–465 (2003)

    MathSciNet  Google Scholar 

  6. Bolte, S., Cordelieres, F.: A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224(3), 213–32 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chang, M., Sezan, M., Tekalp, A., Berg, M.: Bayesian segmentation of multislice brain magnetic resonance imaging using 3-D Gibbsian priors. Opt. Eng. 35(11), 97–106 (1996)

    Article  Google Scholar 

  8. Costes, S., Daelemans, D., Pavlakis, G., Lockett, S.: Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86(6), 3993–4003 (2004)

    Article  Google Scholar 

  9. Demandolx, D., Davoust, J.: Multicolour analysis and local image correlation in confocal microscopy. J. Microsc. 185(1), 21–36 (2003)

    Article  Google Scholar 

  10. Dunn, K., Kamocka, M., McDonald, J.: A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011)

    Article  Google Scholar 

  11. Helmuth, J., Paul, G., Sbalzarini, I.: Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images. BMC Bioinf. 11(372), 1–12 (2010)

    Google Scholar 

  12. Jezierska, A., Talbot, H., Pesquet, J., Engler, G.: Poisson-Gaussian noise parameter estimation in fluorescence microscopy imaging. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1663–1666 (2012)

    Google Scholar 

  13. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging 22(1), 105–119 (2003)

    Article  Google Scholar 

  14. Lew, M., Lee, S., Ptacin, L., Lee, M., Twieg, R., Shapiro, L., Moerner, W.: Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proc. Nat. Acad. Sci. 108(46), E1102–E1110 (2011)

    Article  Google Scholar 

  15. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Advances in Pattern Recognition. Springer, London (2009)

    MATH  Google Scholar 

  16. Liu, W., Awate, S.P., Anderson, J., Fletcher, P.T.: A functional networks estimation method of resting-state fMRI using a hierarchical Markov random field. NIMG 100, 520–34 (2014)

    Google Scholar 

  17. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Imaging Process 20(3), 696–708 (2011)

    Article  MathSciNet  Google Scholar 

  18. Manders, E., Verbeek, F., Aten, J.: Measurement of co-localisation of objects in dual-colour confocal images. J. Microsc. 169(3), 375–382 (1993)

    Article  Google Scholar 

  19. Ng, B., Hamarneh, G., Abugharbieh, R.: Modeling brain activation in fMRI using group MRF. IEEE Trans. Med. Imaging 31(5), 1113–1123 (2012)

    Article  Google Scholar 

  20. Oheim, M., Li, D.: Quantitative colocalisation imaging: concepts, measurements, and pitfalls. In: Frischknecht, F., Shorte, S.L. (eds.) Imaging Cellular and Molecular Biological Functions. Principles and Practice, pp. 117–155. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Pham, D.L., Prince, J.L.: A generalized EM algorithm for robust segmentation of magnetic resonance images. In: Proceedings of Conference on Information Science and Systems, pp. 558–563 (1999)

    Google Scholar 

  22. Ramirez, O., Garcia, A., Couve, A., Hartel, S.: Confined displacement algorithm determines true and random colocalization in fluorescence microscopy. J. Microsc. 239, 173–183 (2010)

    Article  MathSciNet  Google Scholar 

  23. Rizk, A., Paul, G., Incardona, P., Bugarski, M., Mansouri, M., Niemann, A., Ziegler, U., Berger, P., Sbalzarini, I.: Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protoc. 9(3), 586–596 (2014)

    Article  Google Scholar 

  24. Roche, A., Ribes, D., Bach-Cuadra, M., Kruger, G.: On the convergence of EM-like algorithms for image segmentation using Markov random fields. Med. Imaging Anal. 15(6), 830–839 (2011)

    Article  Google Scholar 

  25. Sarder, P., Nehorai, A.: Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23(3), 32–45 (2006)

    Article  Google Scholar 

  26. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001)

    Article  Google Scholar 

  27. Zinchuk, V., Zinchuk, O.: Quantitative colocalization analysis of confocal fluorescence microscopy images. Curr. Protoc. Cell Biol. 62(4.19), 1–14 (2008)

    Google Scholar 

  28. Zinchuk, V., Wu, Y., Grossenbacher-Zinchuk, O.: Bridging the gap between qualitative and quantitative colocalization results in fluorescence microscopy studies. Nature: Sci. Rep. 3(1365), 1–5 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyash P. Awate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Awate, S.P., Radhakrishnan, T. (2015). Colocalization Estimation Using Graphical Modeling and Variational Bayesian Expectation Maximization: Towards a Parameter-Free Approach. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics