Skip to main content

Temporal Trajectory and Progression Score Estimation from Voxelwise Longitudinal Imaging Measures: Application to Amyloid Imaging

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

Cortical \(\beta \)-amyloid deposition begins in Alzheimer’s disease (AD) years before the onset of any clinical symptoms. It is therefore important to determine the temporal trajectories of amyloid deposition in these earliest stages in order to better understand their associations with progression to AD. A method for estimating the temporal trajectories of voxelwise amyloid as measured using longitudinal positron emission tomography (PET) imaging is presented. The method involves the estimation of a score for each subject visit based on the PET data that reflects their amyloid progression. This amyloid progression score allows subjects with similar progressions to be aligned and analyzed together. The estimation of the progression scores and the amyloid trajectory parameters are performed using an expectation-maximization algorithm. The correlations among the voxel measures of amyloid are modeled to reflect the spatial nature of PET images. Simulation results show that model parameters are captured well at a variety of noise and spatial correlation levels. The method is applied to longitudinal amyloid imaging data considering each cerebral hemisphere separately. The results are consistent across the hemispheres and agree with a global index of brain amyloid known as mean cortical DVR. Unlike mean cortical DVR, which depends on a priori defined regions, the progression score extracted by the method is data-driven and does not make assumptions about regional longitudinal changes. Compared to regressing on age at each voxel, the longitudinal trajectory slopes estimated using the proposed method show better localized longitudinal changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  2. Avants, B.B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., Gee, J.C.: The optimal template effect in hippocampus studies of diseased populations. NeuroImage 49(3), 2457–2466 (2010)

    Article  Google Scholar 

  3. Bilgel, M., An, Y., Lang, A., Prince, J., Ferrucci, L., Jedynak, B., Resnick, S.M.: Trajectories of Alzheimer disease-related cognitive measures in a longitudinal sample. Alzheimer’s Dement. 10(6), 735–742 (2014)

    Article  Google Scholar 

  4. Bilgel, M., Carass, A., Resnick, S.M., Wong, D.F., Prince, J.L.: Deformation field correction for spatial normalization of PET images using a population-derived partial least squares model. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 198–206. Springer, Heidelberg (2014)

    Google Scholar 

  5. Cressie, N., Hawkins, D.M.: Robust estimation of the variogram. J. Int. Assoc. Math. Geol. 12(2), 115–125 (1980)

    Article  MathSciNet  Google Scholar 

  6. Dale, A., Fischl, B., Sereno, M.: Cortical surface-based analysis: I. segmentation and surface reconstruction. NeuroImage 194, 179–194 (1999)

    Article  Google Scholar 

  7. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

    Article  Google Scholar 

  8. Jack, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., Shaw, L.M., Vemuri, P., Wiste, H.J., Weigand, S.D., Lesnick, T.G., Pankratz, V.S., Donohue, M.C., Trojanowski, J.Q.: Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12(2), 207–216 (2013)

    Article  Google Scholar 

  9. Jedynak, B.M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B.T., Raunig, D., Jedynak, C.P., Caffo, B., Prince, J.L.: A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease neuroimaging initiative cohort. NeuroImage 63(3), 1478–1486 (2012)

    Article  Google Scholar 

  10. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)

    Article  Google Scholar 

  11. Resnick, S.M., Goldszal, A.F., Davatzikos, C., Golski, S., Kraut, M.A., Metter, E.J., Bryan, R.N., Zonderman, A.B.: One-year age changes in MRI brain volumes in older adults. Cereb. Cortex 10(5), 464–472 (2000)

    Article  Google Scholar 

  12. Shock, N.W., Greulich, R.C., Andres, R., Arenberg, D., Costa Jr., P.T., Lakatta, E.G., Tobin, J.D.: Normal human aging: The Baltimore Longitudinal Study of Aging. Technical report, U.S. Government Printing Office, Washington, DC (1984)

    Google Scholar 

  13. Younes, L., Albert, M., Miller, M.I.: Inferring changepoint times of medial temporal lobe morphometric change in preclinical Alzheimer’s disease. NeuroImage Clin. 5, 178–187 (2014)

    Article  Google Scholar 

  14. Young, A.L., Oxtoby, N.P., Daga, P., Cash, D.M., Fox, N.C., Ourselin, S., Schott, J.M., Alexander, D.C.: A data-driven model of biomarker changes in sporadic Alzheimer’s disease. Brain 137, 2564–2577 (2014)

    Article  Google Scholar 

  15. Zhou, Y., Endres, C.J., Brašić, J.R., Huang, S.C., Wong, D.F.: Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. NeuroImage 18(4), 975–989 (2003)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported in part by the Intramural Research Program of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Bilgel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bilgel, M., Jedynak, B., Wong, D.F., Resnick, S.M., Prince, J.L. (2015). Temporal Trajectory and Progression Score Estimation from Voxelwise Longitudinal Imaging Measures: Application to Amyloid Imaging. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics