Skip to main content

Graph Partitioning for Independent Sets

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9125))

Included in the following conference series:

  • 1348 Accesses

Abstract

Computing maximum independent sets in graphs is an important problem in computer science. In this paper, we develop an evolutionary algorithm to tackle the problem. The core innovations of the algorithm are very natural combine operations based on graph partitioning and local search algorithms. More precisely, we employ a state-of-the-art graph partitioner to derive operations that enable us to quickly exchange whole blocks of given independent sets. To enhance newly computed offsprings we combine our operators with a local search algorithm. Our experimental evaluation indicates that we are able to outperform state-of-the-art algorithms on a variety of instances.

Graph Partitioning for Independent Sets—Partially supported by DFG Gottfried Wilhelm Leibniz Prize 2012 for Peter Sanders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast Local Search for the Maximum Independent Set Problem. J. Heuristics 18(4), 525–547 (2012)

    Article  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Ph.D thesis (1996)

    Google Scholar 

  3. Bäck, T., Khuri, S.: An evolutionary heuristic for the maximum independent set problem. In: Proc. 1st IEEE Conf. on Evolutionary Computation, pp. 531–535. IEEE (1994)

    Google Scholar 

  4. Bader, D., Kappes, A., Meyerhenke, H., Sanders, P., Schulz, C., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia of Social Network Analysis and Mining. Springer (2014)

    Google Scholar 

  5. Battiti, R., Protasi, M.: Reactive Local Search for the Maximum Clique Problem. Algorithmica 29(4), 610–637 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borisovsky, P.A., Zavolovskaya, M.S.: Experimental comparison of two evolutionary algorithms for the independent set problem. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 154–164. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Davis, T.: The University of Florida Sparse Matrix Collection

    Google Scholar 

  8. De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press (2006)

    Google Scholar 

  9. Feo, T.A., Resende, M.G.C., Smith, S.H.: A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set. Operations Research 42(5), 860–878 (1994)

    Article  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  11. Gemsa, A., Niedermann, B., Nöllenburg, M.: Trajectory-based dynamic map labeling. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 413–423. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  13. Grosso, A., Locatelli, M., Della Croce, F.: Combining Swaps and Node Weights in an Adaptive Greedy Approach for the Maximum Clique Problem. J. Heuristics 10(2), 135–152 (2004)

    Article  Google Scholar 

  14. Grosso, A., Locatelli, M., Pullan, W.: Simple Ingredients Leading to Very Efficient Heuristics for the Maximum Clique Problem. J. Heuristics 14(6), 587–612 (2008)

    Article  Google Scholar 

  15. Hansen, P., Mladenović, N., Urošević, D.: Variable Neighborhood Search for the Maximum Clique. Discrete Applied Mathematics 145(1), 117–125 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Katayama, K., Hamamoto, A., Narihisa, H.: An Effective Local Search for the Maximum Clique Problem. Inf. Proc. Letters 95(5), 503–511 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lamm, S.: Evolutionary Algorithms for Independent Sets. Bachelor’s Thesis, KIT (2014)

    Google Scholar 

  18. Lamm, S., Sanders, P., Schulz, C.: Graph Partitioning for Independent Sets. Technical Report arxiv:1502.01687 (2015)

    Google Scholar 

  19. Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 351–363. Springer, Heidelberg (2014)

    Google Scholar 

  20. Miller, B.L., Goldberg, D.E.: Genetic Algorithms, Tournament Selection, and the Effects of Noise. Evolutionary Computation 4(2), 113–131 (1996)

    Article  Google Scholar 

  21. Pullan, W.J., Hoos, H.H.: Dynamic Local Search for the Maximum Clique Problem. J. Artif. Intell. Res. (JAIR) 25, 159–185 (2006)

    MATH  Google Scholar 

  22. Sanders, P., Schulz, C.: KaHIP - Karlsruhe High Qualtity Partitioning Homepage. http://algo2.iti.kit.edu/documents/kahip/index.html

  23. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph partitioning. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Soper, A.J., Walshaw, C., Cross, M.: A Combined Evolutionary Search and Multilevel Optimisation Approach to Graph-Partitioning. J. of Global Optimization 29(2), 225–241 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lamm, S., Sanders, P., Schulz, C. (2015). Graph Partitioning for Independent Sets. In: Bampis, E. (eds) Experimental Algorithms. SEA 2015. Lecture Notes in Computer Science(), vol 9125. Springer, Cham. https://doi.org/10.1007/978-3-319-20086-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20086-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20085-9

  • Online ISBN: 978-3-319-20086-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics