Abstract
A numerical-analytical algorithm for modeling of seismic and acoustic-gravity waves propagation is applied to a heterogeneous “Earth-Atmosphere" model. Seismic wave propagation in an elastic half-space is described by a system of first-order dynamic equations of elasticity theory. The propagation of acoustic-gravity waves in the atmosphere is described by the linearized Navier-Stokes equations with the wind. The algorithm is based on the integral Laguerre transform with respect to time, the finite integral Fourier transform with respect to a spatial coordinate combined with a finite difference method for the reduced problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alekseev, A.S., Glinsky, B.M., Dryakhlov, S.I., et al.: The effect of acoustic-seismic induction in vibroseismic sounding. Dokl. RAN. 346(5), 664–667 (1996)
Gasilova, L.A., Petukhov, Y.V.: On the theory of surface wave propagation along different interfaces in the atmosphere. Izv. RAN. Fizika atmosfery i okeana 35(1), 14–23 (1999)
Razin, A.V.: Propagation of a spherical acoustic delta wavelet along the gas-solid interface. Izv. RAN. Fizika zemli. 2, 73–77 (1993)
Mikhailenko, B.G., Reshetova, G.V.: Mathematical simulation of propagation of seismic and acoustic-gravitational waves for an inhomogeneous Earth-Atmosphere model. Geologiya i geofizika 47(5), 547–556 (2006)
Mikhailenko, B.G.: Spectral Laguerre method for the approximate solution of time dependent problems. Appl. Math. Lett. 12, 105–110 (1999)
Konyukh, G.V., Mikhailenko, B.G., Mikhailov, A.A.: Application of the integral Laguerre transforms for forward seismic modeling. J. Comput. Acoust. 9(4), 1523–1541 (2001)
Mikhailenko, B.G., Mikhailov, A.A., Reshetova, G.V.: Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method. J. Pure Appl. Geophys. 160, 1207–1224 (2003)
Mikhailenko, B.G., Mikhailov, A.A., Reshetova, G.V.: Numerical viscoelastic modeling by the spectral Laguerre method. Geophys. Prospect. 51, 37–48 (2003)
Imomnazarov, K.K., Mikhailov, A.A.: Use of the spectral Laguerre method to solve a linear 2D dynamic problem for porous media. Sib. Zh. Industr. matem. 11(2), 86–95 (2008)
Mikhailov, A.A.: Simulation of seismic fields for 2.5D inhomogeneous viscoelastic media. Proc. of the Intern. Conference “Mathematical Methods in Geophysics". Novosibirsk. Part 1, 146–152 (2003)
Suetin, P.K.: Classical orthogonal polynomials, p. 327. Nauka, Moscow (1999)
Virieux, J.: P-, SV- wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)
Saad, Y., Van der Vorst, H.A.: Iterative solution of linear systems in the 20\(^{th}\) century. J. Comput. Appl. Math. 123, 1–33 (2000)
Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear system. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)
Acknowledgements
This work was supported by the Russian Foundation for Basic Research (project 14-05-00867).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mikhailenko, B., Mikhailov, A.A., Reshetova, G.V. (2015). Modeling the Wind Influence on Acoustic-Gravity Propagation Waves in a Heterogeneous Earth-Atmosphere Model. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods,Theory and Applications. FDM 2014. Lecture Notes in Computer Science(), vol 9045. Springer, Cham. https://doi.org/10.1007/978-3-319-20239-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-20239-6_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20238-9
Online ISBN: 978-3-319-20239-6
eBook Packages: Computer ScienceComputer Science (R0)