Skip to main content

Multi-objective Generation Scheduling Using Modified Non-dominated Sorting Genetic Algorithm- II

  • Conference paper
  • First Online:
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8947))

Included in the following conference series:

  • 1627 Accesses

Abstract

This paper presents a Modified Non-dominated Sorting Genetic Algorithm-II (MNSGA-II) solution to Multi-objective Generation Scheduling (MOGS) problem. The MOGS problem involves the decisions with regards to the unit start-up, shut down times and the assignment of the load demands to the committed generating units, considering conflicting objectives such as minimization of system operational cost and minimization of emission release. Through an intelligent encoding scheme, hard constraints such as minimum up/down time constraints are automatically satisfied. For maintaining good diversity in the performance of NSGA-II, the concepts of Dynamic Crowding Distance (DCD) is implemented in NSGA-II algorithm and given the name as MNSGA-II. In order to prove the capability of the proposed approach 10 units, 24-hour test system is considered. The performance of the MNSGA-II are compared with NSGA-II and validated with reference Pareto front generated by conventional weighted sum method using Real Coded Genetic Algorithm (RGA). Numerical results demonstrate the ability of the proposed approach, to generate well distributed pareto front solutions for MOGS problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation and Control, 2nd edn. Wiley, New York (1996)

    Google Scholar 

  2. Yamin, H.Y.: Review on methods of generation scheduling in electric power systems. J. Electr. Power Syst. Res. 69, 227–248 (2004)

    Article  Google Scholar 

  3. Padhy, N.P.: Unit commitment – a bibliographical survey. IEEE Trans. Power Syst. 19, 1196–1205 (2004)

    Article  Google Scholar 

  4. Lee, F.N.: Short-term unit commitment – a new method. IEEE Trans. Power Syst. 3, 691–698 (1988)

    Google Scholar 

  5. Pang, C.K., Sheble, G.B., Albuyeh, F.: Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitment. IEEE Trans. Power Apparatus syst. 100, 1212–1218 (1981)

    Article  Google Scholar 

  6. Virmani, S., Imhof, K., Mukherjee, S.: Implementation of lagrangian based unit commitment problem. IEEE Trans. Power Syst. 10, 772–777 (1995)

    Article  Google Scholar 

  7. Kazarlis, S.A., Bakirtzis, A.G., Petridis, J.: A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11, 83–92 (1996)

    Article  Google Scholar 

  8. Orero, S.O., Irving, M.R.: A genetic algorithm for generation scheduling in power systems. Int. J. Electr. power Energy syst. 18, 19–26 (1996)

    Article  Google Scholar 

  9. Swarup, K.S., Yamashiro, S.: Unit commitment solution methodology using genetic algorithm. IEEE Trans. Power Syst. 17, 87–91 (2002)

    Article  Google Scholar 

  10. Dasgupta, D., Mcgregor, D.R.: Thermal unit commitment using genetic algorithms. IEE Proc. Gen Trans. Dist. 141, 459–465 (1994)

    Article  Google Scholar 

  11. Juste, K.A., Kita, H., Tanaka, E., et al.: An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst. 14, 1452–1459 (1999)

    Article  Google Scholar 

  12. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: A simulated annealing algorithm for unit commitment. IEEE Trans. Power Syst. 13, 197–204 (1998)

    Article  Google Scholar 

  13. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: Unit commitment by tabu search. Proc. Inst. Elect. Eng. Gen. Trans. Dist. 145, 56–64 (1998)

    Article  Google Scholar 

  14. Saneifard, S., Prasad, N.R., Smolleck, H.: A fuzzy logic approach to unit commitment. IEEE Trans. Power Syst. 12, 988–995 (1997)

    Article  Google Scholar 

  15. Ouyang, Z., Shahidehpour, S.M.: Heuristic muti-area unit commitment with economic dispatch. IEE Proc. 138, 242–252 (1991)

    Article  Google Scholar 

  16. Tong, S.K., Shahidehpour, S.M., Ouyang, Z.: A heuristic short-term unit commitment. IEEE Trans. Power Syst. 6, 1210–1216 (1991)

    Article  Google Scholar 

  17. Wang, C., Shahidehpour, S.M.: Effects of ramp-rate limits on unit commitment and economic dispatch. IEEE Trans. Power Syst. 8, 1341–1350 (1993)

    Article  Google Scholar 

  18. Ongsakul, W., Petcharaks, N.: Unit commitment by enhanced adaptive lagrangian relaxation. IEEE Tran. Power Syst. 19, 620–628 (2004)

    Article  Google Scholar 

  19. Cheng, C.P., Liu, C.W., Liu, C.C.: Unit commitment by lagrangian relaxation and genetic algorithms. IEEE Trans. power Syst. 15, 707–714 (2002)

    Article  Google Scholar 

  20. Mahadevan, K., Kannan, P.S.: Lagrangian relaxation based particle swarm optimization for unit commitment problem. J. Power Energy Syst. 27(4), 320–329 (2007)

    Google Scholar 

  21. Bharathi, R., Kumar, M.J., Sunitha, D., Premalatha, S.: Optimization of combined economic and emission dispatch problem – a comparative study. In: Proceedings of Eighth International Power Engineering Conference, pp. 134–139 (2007)

    Google Scholar 

  22. Dhillon, J.S., Parti, S.C., Kothari, D.P.: Stochastic economic emission dispatch. Electr. Power Syst. Res. 26, 197 (1993)

    Article  Google Scholar 

  23. Deb, K.: Optimization using evolutionary algorithms, 2nd edn, pp. 171–280. Wiley, New York (2001)

    MATH  Google Scholar 

  24. Yokoyama, R., Bae, S.H., Morita, T., Sasaki, H.: Generation dispatch based on probability security criteria. IEEE Trans. Power Syst. 3, 317–324 (1988)

    Article  Google Scholar 

  25. Abido, M.A.: Evolutionary algorithms for electric power dispatch problem. IEEE Trans. Evol. Comput. 10(3), 315–329 (2006). doi:10.1109/tevc.2005.857073

    Article  Google Scholar 

  26. Zio, E., Baraldi, P., Pedroni, N.: Optimal power system generation scheduling by multi-objective genetic algorithms with preferences. Reliab. Eng. Syst. Saf. 94, 432–444 (2009)

    Article  Google Scholar 

  27. Li, Y.F., Pedroni, N., Zio, E.: A memetic evolutionary multi-objective optimization method for environmental power unit commitment. IEEE Trans. Power Syst. 28(3), 2660–2669 (2013)

    Article  Google Scholar 

  28. Luo, B., Zheng, J., Xie, J., Wu, J.: Dynamic crowding distance - A new diversity maintenance strategy for MOEAs. In: 4th International Conference on Natural Computation (ICNC 2008), vol. 1, pp. 580–585 (2008)

    Google Scholar 

  29. Dhanalakshmi, S., Kannan, S., Mahadevan, K., Baskar, S.: Application of modified NSGA-II algorithm to combined economic and emission dispatch problem. Int. J. Electr. Power Energy Syst. 33(4), 992–1002 (2011)

    Article  Google Scholar 

  30. Baskar, S., Subbaraj, P., Chidambaram, P.: Application of genetic algorithms to unit commitment problem. IE(I) J. 81, 195–201 (2001)

    Google Scholar 

  31. Dhanalakshmi, S., Kannan, S., Baskar, S., Mahadevan, K.: Intelligent genetic algorithm for generation scheduling under deregulated environment. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 282–289. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Manoharan, P.S., Kannan, P.S., Baskar, S., Iruthayarajan, M.W.: Penalty parameter-less constraint handling scheme based evolutionary algorithm solutions to economic dispatch. IET Gener. Transm. Distrib. 2, 478–490 (2008)

    Article  Google Scholar 

  33. Danaraj, R.M.S., Gajendran, F.: Quadratic programming solution to emission and economic dispatch problems. IE (I) J. 86, 129–132 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Dhanalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dhanalakshmi, S., Kannan, S., Baskar, S., Mahadevan, K. (2015). Multi-objective Generation Scheduling Using Modified Non-dominated Sorting Genetic Algorithm- II. In: Panigrahi, B., Suganthan, P., Das, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science(), vol 8947. Springer, Cham. https://doi.org/10.1007/978-3-319-20294-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20294-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20293-8

  • Online ISBN: 978-3-319-20294-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics