Skip to main content

Multi Robot Path Planning for Known and Unknown Target Using Bacteria Foraging Algorithm

  • Conference paper
  • First Online:
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8947))

Included in the following conference series:

Abstract

This paper discusses a new method for multi robot path planning using bacteria foraging algorithm for known and unknown target. Here direction based movement is used to classify unknown and unknown target. The directional is representing by divide the area virtually by clustering based method. In which each cluster point represents the direction. When the target is known robot has idea for direction of movement to reach target. But when the target is unknown robot have no idea related to existence of target in which direction. After decide the direction robot will move according to the bacteria foraging algorithm that modified according to the robotics problem. The algorithm is tested for both simple and complex environments. Four parameters move, time, coverage and energy are calculated for comparison. The results show that proposed method work well for both known and unknown target path planning problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prassler, E., Stroulia, E., Strobel, M.: Office waste cleanup: an application for service robots. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 1863–1868 (1997)

    Google Scholar 

  2. Jennings, J.S., Whelan, G., Evans, W.F.: Cooperative search and rescue with a team of mobile robots. In: 8th International Conference on Advanced Robotics, pp. 193–200 (1997)

    Google Scholar 

  3. Davids, A.: Urban search and rescue robots: from tragedy to technology. IEEE Intell. Syst. 17(2), 81–83 (2002)

    Google Scholar 

  4. Hougen, D.F., Benjaafar, S., Bonney, J.C., Budenske, J.R., Dvorak, M., Gini, M., French, H., Krantz, D.G., Li, P.Y., Malver, F., Nelson, B., Papanikolopoulos, N., Rybski, P.E., Stoeter, S.A., Voyles, R., Yesin, K.B.: A miniature robotic system for reconnaissance and surveillance. IEEE Int. Conf. Robot. Autom. 1, 501–507 (2000)

    Google Scholar 

  5. Chatila, R., Lacroix, S., Simeon, T., Herrb, M.: Planetary exploration by a mobile robot: mission teleprogramming and autonomous navigation. Auton. Robots 2(4), 333–344 (1995)

    Article  Google Scholar 

  6. Singer, P.: Military robotics and ethics: a world of killer apps. Nature 477(7365), 399–401 (2011)

    Article  Google Scholar 

  7. Dario, P., Guglielmelli, E., Allotta, B., Carrozza, M.C.: Robotics for medical applications. IEEE Robot. Autom. Mag. 3(3), 44–56 (1996)

    Article  MATH  Google Scholar 

  8. Ahmadi, M., Stone, P.: A multi-robot system for continuous area sweeping tasks. In: IEEE International Conference on Robotics and Automation, pp. 1724–1729. ICRA (2006)

    Google Scholar 

  9. Barraquand, J., Bruno, L., Latombe, J.-C.: Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)

    Article  Google Scholar 

  10. Willms, A.R., Yang, S.X.: An efficient dynamic system for real-time robot-path planning. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36(4), 755–766 (2006)

    Article  Google Scholar 

  11. Bennewitz, M., Burgard, W., Thrun, S.: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Robot. Auton. Syst. 41(2), 89–99 (2002)

    Article  Google Scholar 

  12. Gong, D.W., Zhang, J.H., Zhang, Y.: Multi-objective particle swarm optimization for robot path planning in environment with danger sources. J. Comput. 6(8), 1554–1561 (2011)

    Article  Google Scholar 

  13. Hao, W., Qin, S.: Multi-objective path planning for space exploration robot based on chaos immune particle swarm optimization algorithm. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI 2011, Part II. LNCS, vol. 7003, pp. 42–52. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Rakshit, P., Banerjee, D., Konar, A., Janarthanan, R.: An adaptive memetic algorithm for multi-robot path-planning. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds.) SEMCCO 2012. LNCS, vol. 7677, pp. 248–258. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Ashraf, S., Budabbus, H., S.M.: Finding an optimal path planning for multiple robots using genetic algorithm. In: The 13th International Arab Conference on Information Technology, ACIT (2012)

    Google Scholar 

  16. Sahoo, R.R., Rakshit, P., Haidar, M.T., Swarnalipi, S., Balabantaray, B.K., Mohapatra, S.: Navigational path planning of multi-robot using honey bee mating optimization algorithm (HBMO). Int. J. Comput. Appl. 27(11), 0975–8887 (2011)

    Google Scholar 

  17. Ismail, A.T., Sheta, A., Al-Weshah, M.: A mobile robot path planning using genetic algorithm in static environment. J. Comput. Sci. 4(4), 341–344 (2008)

    Article  Google Scholar 

  18. Ahmed, F., Deb, K.: Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms. Springer J. Soft Comput. 17(7), 1283–1299 (2013)

    Article  Google Scholar 

  19. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Found. Comput. Intell. 3, 23–55 (2009)

    Google Scholar 

  20. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  21. Biswas, A., Dasgupta, S., Das, S., Abraham, A.: Synergy of PSO and bacterial foraging optimization—a comparative study on numerical benchmarks. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.) Innovations in Hybrid Intelligent Systems, vol. 44, pp. 255–263. Springer, Berlin (2007)

    Chapter  Google Scholar 

  22. Shen, H., Zhu, Y., Zhou, X., Guo, H., Chang, C.: Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization. In: Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 497–504 (2009)

    Google Scholar 

  23. Tang, W.J., Wu, Q.H., Saunders, J.R.: Bacterial foraging algorithm for dynamic environments. In: IEEE Congress on Evolutionary Computation, 2006. CEC, pp. 1324−1330 (2006)

    Google Scholar 

  24. Choudhury, B., Acharya, O.P., Patnaik, A.: Fault finding in antenna array using bacteria foraging optimization technique. J. Commun. Comput. 9(3), 345–349 (2012)

    Google Scholar 

  25. Munoz, M.A., Halgamuge, S., Alfonso, W., Caicedo, E.F.: Simplifying the bacteria foraging optimization algorithm In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–7 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sharma, S., Sur, C., Shukla, A., Tiwari, R. (2015). Multi Robot Path Planning for Known and Unknown Target Using Bacteria Foraging Algorithm. In: Panigrahi, B., Suganthan, P., Das, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science(), vol 8947. Springer, Cham. https://doi.org/10.1007/978-3-319-20294-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20294-5_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20293-8

  • Online ISBN: 978-3-319-20294-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics