Skip to main content

Complexity Reduction Using Two Stage Tracking

  • Conference paper
  • First Online:
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8947))

Included in the following conference series:

  • 1658 Accesses

Abstract

The Estimation of MIMO Channels becomes a tedious task in the non-stationary environment. This is because of pilot overhead and corresponding interference. To reduce this pilot overhead, QR decomposition is proposed in the literature. However, higher the rate of the QR decomposition will result in a computationally intensive system. In this paper, we propose a two stage estimation solution to reduce the complexity as well as to eliminate the interference arising out of pilot overhead. Advantages of this paper can be seen as separation of channel impulse response and interference, elimination of the interference arising out of pilot overhead, and reduction in computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, W., Asai, Y., Onizawa, T., Aikawa, S.: Fast algorithm for decision feedback equalization in multiple input multiple output channel. In: Vehicular Technology Conference, vol. 5, pp. 2423–2428 (2006)

    Google Scholar 

  2. Komninakis, C., Fraqouli, C., Sayed, A.H., Wesel, R.D.: Multi-input multi-output fading channel tracking and equalization using Kalman estimation. IEEE Trans. Sig. Process. 50, 1065–1076 (2002)

    Article  Google Scholar 

  3. Fechtel, S.A., Meyr, H.: An investigation of channel estimation and equalization techniques for moderately rapid fading HF-channels. ICC 2, 768–772 (1991)

    Google Scholar 

  4. Tong, J.: An adaptive channel tracking method for MIMO-OFDM systems. In: ICCCAS, vol. 1, pp. 354–358 (2004)

    Google Scholar 

  5. Zia, A.: Channel identification and tracking using alternating projections. Statistical Signal Processing, pp. 430-433 (2003)

    Google Scholar 

  6. Schafhuber, D., Matz, G., Hlawatsch, F.: Kalman tracking of time varying channels in wireless MIMO-OFDM systems. Sign. Syst. Comput. 2, 1261–1265 (2003)

    Google Scholar 

  7. Oberli, C.: Maximum likelihood tracking algorithms for MIMO-OFDM. Commun. 4, 2468–2472 (2004)

    Google Scholar 

  8. Deng, K., Yin, Q., Meng, Y.: Blind symbol detection for multiple-input multiple-output systems via particle filtering. IEEE Int. Conf. Acoust. Speech Sig. Process. 3, 1041–1044 (2005)

    Google Scholar 

  9. Cescato, D., Bölcskei, H.: Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems. IEEE Trans. Signal Process. 59(4), 1719–1733 (2011)

    Article  MathSciNet  Google Scholar 

  10. Po-Lin, C., Lin-Zheng, H., Li-Wei, C., Yuan-Hao, H.: Interpolation-based QR decomposition and channel estimation processor for MIMO-OFDM system. IEEE Transact. Circuits Syst. I 58(5), 1129–1141 (2011)

    Article  Google Scholar 

  11. Bouchired, S., Ibnkahla, M., Roviras, D., Castanie, F.: Equalization of satellite UMTS channels using neural network devices. In: Proceedings of IEEE, ICASSP 1999, Phoenix, May 1999

    Google Scholar 

  12. Lin, H., Yamashita, K.: Hybrid simplex genetic algorithm for blind equalization using RBF networks. Math. Comput. Simul. 59, 293–304 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, S., Pedrycz, W., Changwook, H.: Nonlinear channel blind equalization using hybrid genetic algorithm with simulated annealing. Math. Comput. Model. 41, 697–709 (2005)

    Article  MATH  Google Scholar 

  14. Lucky, R.W.: Automatic equalization of digital communication. Bell Syst. Tech. J 44, 547–588 (1965)

    Article  MathSciNet  Google Scholar 

  15. George, D.A., Bowen, R.R., Storey, J.R.: An adaptive decision feedback equalizer. IEEE Transact. Commun. Technol. (COM) 19, 281–293 (1971)

    Article  Google Scholar 

  16. Gor, L: Complexity Reduction In: Multiple Input Multiple Output Algorithms, Ph.d. thesis. Victoria University (2007)

    Google Scholar 

  17. Fischer, R.F.H., Windpassinger, C., Stierstorfer, C., Siegl, C., Schenk, A., Abay, U.: Lattice-reduction-aided MMSE equalization and the successive estimation of correlated data. AEU – Int. J. Electron. Commun. 65(8), 688–693 (2011)

    Article  Google Scholar 

  18. Oliver, J., Aravind, R., Prabhu, K.M.M.: A krylov: Subspace based low-rank channel estimation in OFDM systems. Sig. Process. 90(6), 1861–1872 (2010)

    Article  MATH  Google Scholar 

  19. Panda, R.N., Padhy, S.K., Prasad, S., Panigrahi, S.P.: Reduced complexity dynamic systems using approximate control moments. Circuits Syst. Sig. Process. 31(5), 1731–1744 (2012)

    Article  MathSciNet  Google Scholar 

  20. Gao, J., Zhu, X., Nandi, A.K.: Independent component analysis for multiple-input multiple output wireless communication systems. Sig. Process. 91(4), 607–623 (2011)

    Article  MATH  Google Scholar 

  21. Huang, Z., Tsai, P.: Efficient implementation of QR decomposition for Gigabit MIMO-OFDM systems. IEEE Transact. Circuits Syst. I 58(10), 2531–2542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Widrow, B., Stearns, S.: Adaptive Signal Processing. Prentice-Hall Inc., Murray Hill (1985)

    MATH  Google Scholar 

  23. Li, H.Y., Fu, H.L., Guan, A.H.: Game theoretic power control algorithm in cognitive radio networks. J. Chongqing Univ. Posts Telecommun.: Nat. Sci. 22(6), 756–760 (2010)

    Google Scholar 

  24. Zhao, C.S., Kwak, K.: Joint sensing time and power allocation in cooperatively cognitive networks. IEEE Commun. Lett. 14(2), 163–165 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siba Prasada Panigrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Panda, R.N., Padhy, S.K., Panigrahi, S.P. (2015). Complexity Reduction Using Two Stage Tracking. In: Panigrahi, B., Suganthan, P., Das, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science(), vol 8947. Springer, Cham. https://doi.org/10.1007/978-3-319-20294-5_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20294-5_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20293-8

  • Online ISBN: 978-3-319-20294-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics