Abstract
For evaluating performance of a multi-objective optimization for finding the entire efficient front, a number of metrics, such as hyper-volume, inverse generational distance, etc. exists. However, for evaluating an EMO algorithm for finding a subset of the efficient frontier, the existing metrics are inadequate. There does not exist many performance metrics for evaluating a partial preferred efficient set. In this paper, we suggest a metric which can be used for such purposes for both attainable and unattainable reference points. Results on a number of two-objective problems reveal its working principle and its importance in assessing different algorithms. The results are promising and encouraging for its further use.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auger, A., Bader, J., Brockhoff, D.: Theoretically investigating optimal \(\mu \)-distributions for the hypervolume indicator: first results for three objectives. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 586–596. Springer, Heidelberg (2010)
Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo sampling. In: Proceedings of Multiple Criteria Decision Making (MCDM 2008), LNEMS, vol. 634, pp. 313–326. Springer, Heidelberg 2010
Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. J. 19(1), 45–76 (2011)
Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)
Bradstreet, L., While, L., Barone, L.: A fast incremental hypervolume algorithm. IEEE Trans. Evol. Comput. 12(6), 714–723 (2008)
Corne, D. W., Knowles, J. D., Oates, M.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature VI (PPSN-VI), pp. 839–848 (2000)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Kumar, A.: Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2007), pp. 781–788. The Association of Computing Machinery (ACM), New York (2007)
Deb, K., Kumar, A.: Light beam search based multi-objective optimization using evolutionary algorithms. In: Proceedings of the Congress on Evolutionary Computation (CEC 2007), pp. 2125–2132 (2007)
Deb, K., Mohan, M., Mishra, S.: Evaluating the \(\epsilon \)-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol. Comput. J. 13(4), 501–525 (2005)
Deb, K., Sundar, J., Uday, N., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. (IJCIR) 2(6), 273–286 (2006)
Fonseca, C. M., Paquete, L., López-Ibánez, M.: An improved dimension sweep algorithm for the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163. IEEE Press, Piscataway, NJ (2006)
Knowles, J. D., Corne, D. W.: On metrics for comparing nondominated sets. In: Congress on Evolutionary Computation (CEC-2002), pp. 711–716. IEEE Press, Piscataway, NJ (2002)
While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)
Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications, pp. 468–486. Springer-Verlag, Berlin (1980)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K. C., Tsahalis, D. T., Périaux, J., Papailiou, K. D., Fogarty, T.(eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, International Center for Numerical Methods in Engineering (CIMNE), pp. 95–100. Athens (2001)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Acknowledgment
Authors thank Debayan Deb, an undergraduate student of Michigan State of University, USA, for assisting in computer programming of the R-HV metric concept.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Deb, K., Siegmund, F., Ng, A.H.C. (2015). R-HV: A Metric for Computing Hyper-volume for Reference Point Based EMOs. In: Panigrahi, B., Suganthan, P., Das, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science(), vol 8947. Springer, Cham. https://doi.org/10.1007/978-3-319-20294-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-20294-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20293-8
Online ISBN: 978-3-319-20294-5
eBook Packages: Computer ScienceComputer Science (R0)