Abstract
Clinical value of the quantitative assessment of regional myocardial function through segmental strain and strain rate has already been demonstrated. Traditional methods for diagnosing heart diseases are based on values extracted at specific time points during the cardiac cycle, known as ‘techno-markers’, and as a consequence they may fail to provide an appropriate description of the strain (rate) characteristics. This study concerns the statistical analysis of the whole cardiac cycle by the Principal Component Analysis (PCA) method and modeling the major patterns of the strain (rate) curves. Experimental outcomes show that the PCA features can outperform their traditional counterparts in categorizing healthy and infarcted myocardial segments and are able to drive considerable benefit to a classification system by properly modeling the complex structure of the strain rate traces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aoued, F., Eroglu, E., Herbots, L., Rademakers, F., D’hooge, J.: A statistical model-based approach for the detection of abnormal cardiac deformation. In: Ultrasonics Symposium, vol. 1, pp. 512–515. IEEE (2005)
Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105, 539–542 (2002)
Clarysse, P., Han, M., Croisille, P., Magnin, I.: Exploratory analysis of the spatio- temporal deformation of the myocardium during systole from tagged MRI. IEEE Trans. Biomed. Eng. 11, 1328–1339 (2002)
Claus, P., D’hooge, J., Langeland, T.M., Bijnens, B., Sutherland, G.R.: SPEQLE (Software Package for Echocardiographic Quantification LEuven) an integrated approach to ultrasound-based cardiac deformation quantification. In: Computers in Cardiology, vol. 29, pp. 69–72. IEEE (2002)
Cristianini, N., Shawe-Taylore, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)
D’hooge, J., Bijnens, B., Thoen, J., Van de Werf, F., Sutherland, G., Suetens, P.: Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function. IEEE Trans. Med. Imaging 21(9), 1022–1030 (2002)
Jamal, F., Kukulski, T., Sutherland, G.R., Weidemann, F., D’hooge, J., Bijnens, B., Derumeaux, G.: Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction? an ultrasonic strain rate and strain study. J. Am. Soc. Echocardiogr. 15(7), 723–730 (2002)
Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)
Herbots, L., D’hooge, J., Eroglu, E., Thijs, D., Ganame, J., Claus, P., Dubois, C., Theunissen, K., Bogaert, J., Dens, J., Kalantzi, M., Dymarkowski, S., Bijnens, B., Belmans, A., Boogaerts, M., Sutherland, G., Van de Werf, F., Rademakers, F., Janssens, S.: Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. Eur. Heart J. 30, 662–670 (2009)
McMahona, E.M., Korinekb, J., Yoshifukub, S., Senguptaa, P.P., Manducab, A., Belohlaveka, M.: Classification of acute myocardial ischemia by artificial neural network using echocardiographic strain waveforms. Comput. Biol. Med. 38, 416–424 (2008)
Mitani, Y., Hamamoto, Y.: A local mean-based nonparametric classifier. Pattern Recogn. Lett. 27(10), 1151–1159 (2006)
Wold, S., Esbensen, K., Geladi, P.: Principal Component Analysis. Chemometr. Intell. Lab. Syst. 2, 37–52 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Tabassian, M. et al. (2015). Principal Component Analysis for the Classification of Cardiac Motion Abnormalities Based on Echocardiographic Strain and Strain Rate Imaging. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-20309-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20308-9
Online ISBN: 978-3-319-20309-6
eBook Packages: Computer ScienceComputer Science (R0)