Skip to main content

How to Choose Myofiber Orientation in a Biventricular Finite Element Model?

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Abstract

Biventricular (BiV) finite element (FE) models of cardiac electromechanics are evolving to a state where they can assist in clinical decision making. Carefully designed patient-specific geometries are combined with generic myofiber orientation data, because of lack of accurate techniques to measure myofiber orientation. However, it remains unclear to what extent the assumption of a generic myofiber orientation influences predictions on cardiac function from BiV FE models. As an alternative approach, it was suggested to let the myofiber orientation adapt in response to fiber cross-fiber shear. The aim of this study was to investigate to what extent variations in myofiber orientation as induced by adaptive myofiber reorientation caused variations in global stroke work in a BiV FE model and whether the adaptation model could be used as an alternative approach to prescribe the myofiber orientation in these models. An average change in myofiber orientation over an angle of about 8\(^\circ \), predominantly in transmural direction, resulted in a 91 % increase of LV and 20 % increase of RV stroke work. These findings indicate the importance for a more thorough effort to address a realistic myofiber orientation. The currently used model for adaptive myofiber reorientation seems a useful approach to prescribe the myofiber orientations in BiV FE models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguado-Sierra, J., Krishnamurthy, A., Villongco, C., Chuang, J., Howard, E., Gonzales, M.J., Omens, J., Krummen, D.E., Narayan, S., Kerckhoffs, R.C.P., McCulloch, A.D.: Patient-specific modeling of dyssynchronous heart failure: a case study. Prog. Biophys. Mol. Biol. 107(1), 147–155 (2011)

    Article  Google Scholar 

  2. Constantino, J., Hu, Y., Trayanova, N.A.: A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of crt. Prog. Biophys. Mol. Biol. 110(2–3), 372–379 (2012)

    Article  Google Scholar 

  3. Kerckhoffs, R.C.P., Healy, S.N., Usyk, T.P., McCulloch, A.H.: Computational methods for cardiac electromechanics. Proc. IEEE 94(4), 769–783 (2006)

    Article  Google Scholar 

  4. Niederer, S.A., Plank, G., Chinchapatnam, P., Ginks, M., Lamata, P., Rhode, K.S., Rinaldi, C.A., Razavi, R., Smith, N.P.: Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc. Res. 89(2), 336–343 (2011)

    Article  Google Scholar 

  5. Saint-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Comp. Struc. 84, 1743–1759 (2006)

    Article  Google Scholar 

  6. Xia, L., Huo, M., Wei, Q., Liu, F., Crozier, S.: Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model. Phys. Med. Biol. 50(8), 1901–1917 (2005)

    Article  Google Scholar 

  7. Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., Land, S., Lewandowski, A.J., Barber, D., Niederer, S., Smith, N.: An automatic service for the personalization of ventricular cardiac meshes. J. R. Soc. Interface. 11(91), 20131023 (2014)

    Article  Google Scholar 

  8. Nielsen, P.M., LeGrice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Heart Circ. Physiol. 260, H1365–H1378 (1991)

    Google Scholar 

  9. Sermesant, M., et al.: Personalised electromechanical model of the heart for the prediction of the acute effects of cardiac resynchronisation therapy. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 239–248. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Reese, T.G., Weisskoff, R.M., Smith, R.N., Rosen, B.R., Dinsmore, R.E., Wedeen, V.J.: Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn. Reson. Med. 34(6), 786–791 (1995)

    Article  Google Scholar 

  11. Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. 274(5), H1627–H1634 (1998)

    Google Scholar 

  12. Lombaert, H., Peyrat, J.M., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7), 1436–1447 (2012)

    Article  Google Scholar 

  13. Geerts-Ossevoort, L., Kerckhoffs, R., Bovendeerd, P., Arts, T.: Towards patient specific models of cardiac mechanics: a sensitivity study. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.) FIMH 2003. LNCS, vol. 2674, pp. 81–90. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Bovendeerd, P.H.M., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. Heart Circ. Physiol. 297(3), H1058–H1068 (2009)

    Article  Google Scholar 

  15. Kroon, W., Delhaas, T., Arts, T., Bovendeerd, P.: Computational analysis of the myocardial structure: adaptation of myofiber orientations through deformation in three dimensions. Med. Imag. Anal. 13, 346–353 (2009)

    Article  Google Scholar 

  16. Pluijmert, M., Bovendeerd, P., Kroon, W., Delhaas, T.: The effect of active cross-fiber stress on shear-induced myofiber reorientation. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 35–45. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Kerckhoffs, R.C.P., Bovendeerd, P.H.M., Kotte, J.C.S., Prinzen, F.W., Smits, K., Arts, T.: Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31(5), 536–547 (2003)

    Article  Google Scholar 

  18. Bayer, J.D., Blake, R.C., Plank, G., Trayanova, N.A.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012)

    Article  Google Scholar 

  19. Shoukas, A.A., Sagawa, K.: Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ. Res. 33(1), 22–33 (1973)

    Article  Google Scholar 

  20. Shoukas, A.A.: Pressure-flow and pressure-volume relations in the entire pulmonary vascular bed of the dog determined by two-port analysis. Circ. Res. 37(6), 809–818 (1975)

    Article  Google Scholar 

  21. Geerts-Ossevoort, L., Bovendeerd, P., Nicolay, K., Arts, T.: Characterization of the normal cardiac myofiber field in goat measured with mr-diffusion tensor imaging. Am. J. Physiol. Heart Circ. Physiol. 283(1), H139–H145 (2002)

    Article  Google Scholar 

  22. Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology. Elsevier Saunders, Philadelphia (2006)

    Google Scholar 

  23. Scollan, D.F., Holmes, A., Winslow, R., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. 275(6), H2308–H2318 (1998)

    Google Scholar 

  24. Stender, B., Schlaefer, A.: Detecting rat heart myocardial fiber directions in x-ray microtomography using coherence-enhancing diffusion filtering. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 63–70. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Stephenson, R.S., Boyett, M.R., Hart, G., Nikolaidou, T., Cai, X., Corno, A.F., Alphonso, N., Jeffery, N., Jarvis, J.C.: Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One 7(4), e35299 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieke Pluijmert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pluijmert, M., Prinzen, F., de la Parra, A.F., Kroon, W., Delhaas, T., Bovendeerd, P.H.M. (2015). How to Choose Myofiber Orientation in a Biventricular Finite Element Model?. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics