Abstract
The problem of obtaining a discrete curve approximation to data points appears recurrently in several real-world fields, such as CAD/CAM (construction of car bodies, ship hulls, airplane fuselage), computer graphics and animation, medicine, and many others. Although polynomial blending functions are usually applied to solve this problem, some shapes cannot yet be adequately approximated by using this scheme. In this paper we address this issue by applying rational blending functions, particularly the rational Bernstein polynomials. Our methodology is based on a memetic approach combining a powerful metaheuristic method for global optimization (called the electromagnetism algorithm) with a local search method. The performance of our scheme is illustrated through its application to four examples of 2D and 3D synthetic shapes with very satisfactory results in all cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques. IEEE Trans. on Visualization and Computer Graphics 7(1), 1–16 (2001)
Barnhill, R.E.: Geometric Processing for Design and Manufacturing. SIAM, Philadelphia (1992)
Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. Journal of Global Optimization 25, 263–282 (2003)
Birbil, S.I., Fang, S.C., Sheu, R.L.: On the convergence of a population-based global optimization algorithm. Journal of Global Optimization 30, 301–318 (2004)
Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Oxford (1993)
Farin, G.: Curves and surfaces for CAGD, 5th edn. Morgan Kaufmann, San Francisco (2002)
Echevarría, G., Iglesias, A., Gálvez, A.: Extending neural networks for b-spline surface reconstruction. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002, Part II. LNCS, vol. 2330, pp. 305–314. Springer, Heidelberg (2002)
Gálvez, A., Cobo, A., Puig-Pey, J., Iglesias, A.: Particle Swarm optimization for Bézier surface reconstruction. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 116–125. Springer, Heidelberg (2008)
Gálvez, A., Iglesias, A.: Efficient particle swarm optimization approach for data fitting with free knot B-splines. Computer-Aided Design 43(12), 1683–1692 (2011)
Gálvez, A., Iglesias, A.: Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points. Information Sciences 192(1), 174–192 (2012)
Gálvez, A., Iglesias, A.: A new iterative mutually-coupled hybrid GA-PSO approach for curve fitting in manufacturing. Applied Soft Computing 13(3), 1491–1504 (2013)
Gálvez, A., Iglesias, A.: Firefly algorithm for polynomial Bzier surface parameterization. Journal of Applied Mathematics, Article ID 237984, 9 (2013)
Gálvez, A., Iglesias, A.: From nonlinear optimization to convex optimization through firefly algorithm and indirect approach with applications to CAD/CAM. The Scientific World Journal, Article ID 283919, 10 (2013)
Gálvez, A., Iglesias, A.: Firefly algorithm for explicit B-Spline curve fitting to data points. Mathematical Problems in Engineering, Article ID 528215, 12 (2013)
Gálvez, A., Iglesias, A.: An electromagnetism-based global optimization approach for polynomial Bezier curve parameterization of noisy data points. In: Proc. of Cyberworlds 2013. IEEE Computer Society Press, Los Alamitos, pp. 259–266 (2013)
Gálvez, A., Iglesias, A.: Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting. The Scientific World Journal, Article ID 138760, 11 (2014)
Gálvez, A., Iglesias, A.: New memetic self-adaptive firefly algorithm for continuous optimization. International Journal of Bio-Inspired Computation (in press)
Iglesias, A., Gálvez, A., Avila, A.: Discrete Bézier curve fitting with artificial immune systems. In: Plemenos, D., Miaoulis, G. (eds.) Intelligent Computer Graphics 2012. SCI, vol. 441, pp. 59–75. Springer, Heidelberg (2013)
Gálvez, A., Iglesias, A., Avila, A.: Immunological-based approach for accurate fitting of 3d noisy data points with Bézier surfaces. In: Proc. of Int. Conference on Comp. Science-ICCS 2013. Procedia Computer Science, vol. 18, pp. 50–59 (2013)
Gálvez, A., Iglesias, A., Avila, A., Otero, C., Arias, R., Manchado, C.: Elitist clonal selection algorithm for optimal choice of free knots in B-spline data fitting. Applied Soft Computing 26, 90–106 (2015)
Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and surface fitting of 3d point clouds through genetic algorithms, functional networks and least-squares approximation. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part II. LNCS, vol. 4706, pp. 680–693. Springer, Heidelberg (2007)
Gálvez, A., Iglesias, A., Puig-Pey, J.: Iterative two-step genetic-algorithm method for efficient polynomial B-spline surface reconstruction. Information Sciences 182(1), 56–76 (2012)
Gu, P., Yan, X.: Neural network approach to the reconstruction of free-form surfaces for reverse engineering. Computer-Aided Design 27(1), 59–64 (1995)
Hoffmann, M.: Numerical control of Kohonen neural network for scattered data approximation. Numerical Algorithms 39, 175–186 (2005)
Iglesias, A., Echevarría, G., Gálvez, A.: Functional networks for B-spline surface reconstruction. Future Generation Computer Systems 20(8), 1337–1353 (2004)
Iglesias, A., Gálvez, A.: A new artificial intelligence paradigm for computer-aided geometric design. In: Campbell, J., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 200–213. Springer, Heidelberg (2001)
Iglesias, A., Gálvez, A.: Applying functional networks to fit data points rom B-spline surfaces. In: Proc. of Computer Graphics International, CGI 2001, Hong-Kong (China). IEEE Computer Society Press, Los Alamitos, pp. 329–332 (2001)
Iglesias, A., Gálvez, A.: Curve fitting with RBS functional networks. In: Proc. of Int. Conference on Convergence Information Technology-ICCIT 2008 - Busan (Korea). IEEE Computer Society Press, Los Alamitos, vol. 1, pp. 299–306 (2008)
Iglesias, A., Gálvez, A.: Hybrid functional-neural approach for surface reconstruction. Mathematical Problems in Engineering, Article ID 351648, 13 (2014)
Jing, L., Sun, L.: Fitting B-spline curves by least squares support vector machines. In: Proc. of the 2nd. Int. Conf. on Neural Networks & Brain, Beijing (China). IEEE Press, pp. 905–909 (2005)
Li, W., Xu, S., Zhao, G., Goh, L.P.: Adaptive knot placement in B-spline curve approximation. Computer-Aided Design 37, 791–797 (2005)
Loucera, C., Gálvez, A., Iglesias, A.: Simulated annealing algorithm for Bezier curve approximation. In: Proc. of Cyberworlds 2014. IEEE Computer Society Press, Los Alamitos, pp. 182–189 (2014)
Luus, R., Jaakola, T.H.I.: Optimization by direct search and systematic reduction of the size of search region. American Inst. of Chemical Engineers Journal 19(4), 760–766 (1973)
Park, H.: An error-bounded approximate method for representing planar curves in B-splines. Computer Aided Geometric Design 21, 479–497 (2004)
Park, H., Lee, J.H.: B-spline curve fitting based on adaptive curve refinement using dominant points. Computer-Aided Design 39, 439–451 (2007)
Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer Verlag, Heidelberg (2002)
Pottmann, H., Leopoldseder, S., Hofer, M., Steiner, T., Wang, W.: Industrial geometry: recent advances and applications in CAD. Computer-Aided Design 37, 751–766 (2005)
Powell, M.J.D.: Curve fitting by splines in one variable. In: Hayes, J.G. (ed.) Numerical approximation to functions and data. Athlone Press, London (1970)
Sarfraz, M., Raza, S.A.: Capturing outline of fonts using genetic algorithms and splines. In: Proc. of Fifth International Conference on Information Visualization IV 2001. IEEE Computer Society Press, pp. 738–743 (2001)
Wang, W.P., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Transactions on Graphics 25(2), 214–238 (2006)
Yoshimoto, F., Harada, T., Yoshimoto, Y.: Data fitting with a spline using a real-coded algorithm. Computer-Aided Design 35, 751–760 (2003)
Zhao, X., Zhang, C., Yang, B., Li, P.: Adaptive knot adjustment using a GMM-based continuous optimization algorithm in B-spline curve approximation. Computer-Aided Design 43, 598–604 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Iglesias, A., Gálvez, A. (2015). Memetic Electromagnetism Algorithm for Finite Approximation with Rational Bézier Curves. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-20466-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20465-9
Online ISBN: 978-3-319-20466-6
eBook Packages: Computer ScienceComputer Science (R0)