Skip to main content

Memetic Electromagnetism Algorithm for Finite Approximation with Rational Bézier Curves

  • Conference paper
  • First Online:
Advances in Swarm and Computational Intelligence (ICSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9140))

Included in the following conference series:

  • 1796 Accesses

Abstract

The problem of obtaining a discrete curve approximation to data points appears recurrently in several real-world fields, such as CAD/CAM (construction of car bodies, ship hulls, airplane fuselage), computer graphics and animation, medicine, and many others. Although polynomial blending functions are usually applied to solve this problem, some shapes cannot yet be adequately approximated by using this scheme. In this paper we address this issue by applying rational blending functions, particularly the rational Bernstein polynomials. Our methodology is based on a memetic approach combining a powerful metaheuristic method for global optimization (called the electromagnetism algorithm) with a local search method. The performance of our scheme is illustrated through its application to four examples of 2D and 3D synthetic shapes with very satisfactory results in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques. IEEE Trans. on Visualization and Computer Graphics 7(1), 1–16 (2001)

    Article  Google Scholar 

  2. Barnhill, R.E.: Geometric Processing for Design and Manufacturing. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  3. Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. Journal of Global Optimization 25, 263–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birbil, S.I., Fang, S.C., Sheu, R.L.: On the convergence of a population-based global optimization algorithm. Journal of Global Optimization 30, 301–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  6. Farin, G.: Curves and surfaces for CAGD, 5th edn. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  7. Echevarría, G., Iglesias, A., Gálvez, A.: Extending neural networks for b-spline surface reconstruction. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002, Part II. LNCS, vol. 2330, pp. 305–314. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Gálvez, A., Cobo, A., Puig-Pey, J., Iglesias, A.: Particle Swarm optimization for Bézier surface reconstruction. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 116–125. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Gálvez, A., Iglesias, A.: Efficient particle swarm optimization approach for data fitting with free knot B-splines. Computer-Aided Design 43(12), 1683–1692 (2011)

    Article  Google Scholar 

  10. Gálvez, A., Iglesias, A.: Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points. Information Sciences 192(1), 174–192 (2012)

    Article  Google Scholar 

  11. Gálvez, A., Iglesias, A.: A new iterative mutually-coupled hybrid GA-PSO approach for curve fitting in manufacturing. Applied Soft Computing 13(3), 1491–1504 (2013)

    Article  Google Scholar 

  12. Gálvez, A., Iglesias, A.: Firefly algorithm for polynomial Bzier surface parameterization. Journal of Applied Mathematics, Article ID 237984, 9 (2013)

    Google Scholar 

  13. Gálvez, A., Iglesias, A.: From nonlinear optimization to convex optimization through firefly algorithm and indirect approach with applications to CAD/CAM. The Scientific World Journal, Article ID 283919, 10 (2013)

    Google Scholar 

  14. Gálvez, A., Iglesias, A.: Firefly algorithm for explicit B-Spline curve fitting to data points. Mathematical Problems in Engineering, Article ID 528215, 12 (2013)

    Google Scholar 

  15. Gálvez, A., Iglesias, A.: An electromagnetism-based global optimization approach for polynomial Bezier curve parameterization of noisy data points. In: Proc. of Cyberworlds 2013. IEEE Computer Society Press, Los Alamitos, pp. 259–266 (2013)

    Google Scholar 

  16. Gálvez, A., Iglesias, A.: Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting. The Scientific World Journal, Article ID 138760, 11 (2014)

    Google Scholar 

  17. Gálvez, A., Iglesias, A.: New memetic self-adaptive firefly algorithm for continuous optimization. International Journal of Bio-Inspired Computation (in press)

    Google Scholar 

  18. Iglesias, A., Gálvez, A., Avila, A.: Discrete Bézier curve fitting with artificial immune systems. In: Plemenos, D., Miaoulis, G. (eds.) Intelligent Computer Graphics 2012. SCI, vol. 441, pp. 59–75. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Gálvez, A., Iglesias, A., Avila, A.: Immunological-based approach for accurate fitting of 3d noisy data points with Bézier surfaces. In: Proc. of Int. Conference on Comp. Science-ICCS 2013. Procedia Computer Science, vol. 18, pp. 50–59 (2013)

    Google Scholar 

  20. Gálvez, A., Iglesias, A., Avila, A., Otero, C., Arias, R., Manchado, C.: Elitist clonal selection algorithm for optimal choice of free knots in B-spline data fitting. Applied Soft Computing 26, 90–106 (2015)

    Article  Google Scholar 

  21. Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and surface fitting of 3d point clouds through genetic algorithms, functional networks and least-squares approximation. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part II. LNCS, vol. 4706, pp. 680–693. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Gálvez, A., Iglesias, A., Puig-Pey, J.: Iterative two-step genetic-algorithm method for efficient polynomial B-spline surface reconstruction. Information Sciences 182(1), 56–76 (2012)

    Article  MathSciNet  Google Scholar 

  23. Gu, P., Yan, X.: Neural network approach to the reconstruction of free-form surfaces for reverse engineering. Computer-Aided Design 27(1), 59–64 (1995)

    Article  Google Scholar 

  24. Hoffmann, M.: Numerical control of Kohonen neural network for scattered data approximation. Numerical Algorithms 39, 175–186 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iglesias, A., Echevarría, G., Gálvez, A.: Functional networks for B-spline surface reconstruction. Future Generation Computer Systems 20(8), 1337–1353 (2004)

    Article  Google Scholar 

  26. Iglesias, A., Gálvez, A.: A new artificial intelligence paradigm for computer-aided geometric design. In: Campbell, J., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 200–213. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  27. Iglesias, A., Gálvez, A.: Applying functional networks to fit data points rom B-spline surfaces. In: Proc. of Computer Graphics International, CGI 2001, Hong-Kong (China). IEEE Computer Society Press, Los Alamitos, pp. 329–332 (2001)

    Google Scholar 

  28. Iglesias, A., Gálvez, A.: Curve fitting with RBS functional networks. In: Proc. of Int. Conference on Convergence Information Technology-ICCIT 2008 - Busan (Korea). IEEE Computer Society Press, Los Alamitos, vol. 1, pp. 299–306 (2008)

    Google Scholar 

  29. Iglesias, A., Gálvez, A.: Hybrid functional-neural approach for surface reconstruction. Mathematical Problems in Engineering, Article ID 351648, 13 (2014)

    Google Scholar 

  30. Jing, L., Sun, L.: Fitting B-spline curves by least squares support vector machines. In: Proc. of the 2nd. Int. Conf. on Neural Networks & Brain, Beijing (China). IEEE Press, pp. 905–909 (2005)

    Google Scholar 

  31. Li, W., Xu, S., Zhao, G., Goh, L.P.: Adaptive knot placement in B-spline curve approximation. Computer-Aided Design 37, 791–797 (2005)

    Article  MATH  Google Scholar 

  32. Loucera, C., Gálvez, A., Iglesias, A.: Simulated annealing algorithm for Bezier curve approximation. In: Proc. of Cyberworlds 2014. IEEE Computer Society Press, Los Alamitos, pp. 182–189 (2014)

    Google Scholar 

  33. Luus, R., Jaakola, T.H.I.: Optimization by direct search and systematic reduction of the size of search region. American Inst. of Chemical Engineers Journal 19(4), 760–766 (1973)

    Article  Google Scholar 

  34. Park, H.: An error-bounded approximate method for representing planar curves in B-splines. Computer Aided Geometric Design 21, 479–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Park, H., Lee, J.H.: B-spline curve fitting based on adaptive curve refinement using dominant points. Computer-Aided Design 39, 439–451 (2007)

    Article  Google Scholar 

  36. Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  37. Pottmann, H., Leopoldseder, S., Hofer, M., Steiner, T., Wang, W.: Industrial geometry: recent advances and applications in CAD. Computer-Aided Design 37, 751–766 (2005)

    Article  Google Scholar 

  38. Powell, M.J.D.: Curve fitting by splines in one variable. In: Hayes, J.G. (ed.) Numerical approximation to functions and data. Athlone Press, London (1970)

    Google Scholar 

  39. Sarfraz, M., Raza, S.A.: Capturing outline of fonts using genetic algorithms and splines. In: Proc. of Fifth International Conference on Information Visualization IV 2001. IEEE Computer Society Press, pp. 738–743 (2001)

    Google Scholar 

  40. Wang, W.P., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Transactions on Graphics 25(2), 214–238 (2006)

    Article  Google Scholar 

  41. Yoshimoto, F., Harada, T., Yoshimoto, Y.: Data fitting with a spline using a real-coded algorithm. Computer-Aided Design 35, 751–760 (2003)

    Article  Google Scholar 

  42. Zhao, X., Zhang, C., Yang, B., Li, P.: Adaptive knot adjustment using a GMM-based continuous optimization algorithm in B-spline curve approximation. Computer-Aided Design 43, 598–604 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Iglesias, A., Gálvez, A. (2015). Memetic Electromagnetism Algorithm for Finite Approximation with Rational Bézier Curves. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20466-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20465-9

  • Online ISBN: 978-3-319-20466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics