Skip to main content

Capturing DDoS Attack Dynamics Behind the Scenes

  • Conference paper
  • First Online:
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9148))

Abstract

Despite continuous defense efforts, DDoS attacks are still very prevalent on the Internet. In such arms races, attackers are becoming more agile and their strategies are more sophisticated to escape from detection. Effective defenses demand in-depth understanding of such strategies. In this paper, we set to investigate the DDoS landscape from the perspective of the attackers. We focus on the dynamics of the attacking force, aiming to explore the attack strategies, if any. Our study is based on 50,704 different Internet DDoS attacks. Our results indicate that attackers deliberately schedule their controlled bots in a dynamic fashion, and such dynamics can be well captured by statistical distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verisign distributed denial of service trends report. http://www.verisigninc.com/en_US/cyber-security/ddos-protection/ddos-report/index.xhtml, February 2015

  2. Bailey, M., Cooke, E., Jahanian, F., Nazario, J., Watson, D., et al.: The internet motion sensor-a distributed blackhole monitoring system. In: NDSS (2005)

    Google Scholar 

  3. Büscher, A., Holz, T.: Tracking DDoS attacks: insights into the business of disrupting the web. In: Proceedings of the 5th USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET), San Jose (2012)

    Google Scholar 

  4. Casado, M., Garfinkel, T., Cui, W., Paxson, V., Savage, S.: Opportunistic measurement: extracting insight from spurious traffic. In: Proceedings of the 4th ACM Workshop on Hot Topics in Networks (Hotnets-IV) (2005)

    Google Scholar 

  5. Chang, W., Mohaisen, A., Wang, A., Chen, S.: Measuring botnets in the wild: some new trends. In: ACM ASIACCS (2015)

    Google Scholar 

  6. Chang, W., Wang, A., Mohaisen, A., Chen, S.: Characterizing botnets-as-a-service. In: Proceedings of the ACM SIGCOMM (poster) (2014)

    Google Scholar 

  7. Feinstein, L., Schnackenberg, D., Balupari, R., Kindred, D.: Statistical approaches to DDoS attack detection and response. In: DARPA Information Survivability Conference and Exposition (2003)

    Google Scholar 

  8. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop (1994)

    Google Scholar 

  9. Jin, S., Yeung, D.: A covariance analysis model for ddos attack detection. In: IEEE International Conference on Communications (2004)

    Google Scholar 

  10. Kang, B.B., Chan-Tin, E., Lee, C.P., Tyra, J., Kang, H.J., Nunnery, C., Wadler, Z., Sinclair, G., Hopper, N., Dagon, D., et al.: Towards complete node enumeration in a peer-to-peer botnet. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, pp. 23–34. ACM (2009)

    Google Scholar 

  11. Karami, M., McCoy, D.: Understanding the emerging threat of DDoS-as-a-service. In: LEET (2013)

    Google Scholar 

  12. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. In: Knowledge and Information Systems (2005)

    Google Scholar 

  13. Kim, S.W., Park, S., Chu, W.W.: An index-based approach for similarity search supporting time warping in large sequence databases. In: Proceedings of International Conference on Data Engineering (2001)

    Google Scholar 

  14. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? reducing the impact of amplification DDoS attacks. In: USENIX Security Symposium (2014)

    Google Scholar 

  15. Lee, K., Kim, J., Kwon, K.H., Han, Y., Kim, S.: DDoS attack detection method using cluster analysis. Expert Syst. Appl. 34, 1659–1665 (2008)

    Article  Google Scholar 

  16. Li, M.: Change trend of averaged hurst parameter of traffic under DDoS flood attacks. Comput. Secur. 25, 213–220 (2006)

    Article  Google Scholar 

  17. Mao, Z.M., Sekar, V., Spatscheck, O., van der Merwe, J., Vasudevan, R.: Analyzing large DDoS attacks using multiple data sources. In: Proceedings of ACM SIGCOMM Workshop on Large-Scale Attack Defense (2006)

    Google Scholar 

  18. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity. ACM Trans. Comput. Syst. (TOCS) 24(2), 115–139 (2006)

    Article  Google Scholar 

  19. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory IT–28, 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  20. Stringhini, G., Holz, T., Stone-Gross, B., Kruegel, C., Vigna, G.: BOTMAGNIFIER: locating spambots on the internet. In: USENIX Security Symposium (2011)

    Google Scholar 

  21. Wang, A., Mohaisen, A., Chang, W., Chen, S.: Delving into internet DDoS attacks by botnets: characterization and analysis. In: IEEE International Conference on Dependable Systems and Networks (2015)

    Google Scholar 

  22. Wang, A., Chang, W., Mohaisen, A., Chen, S.: How distributed are today’s DDoS attacks? In: Proceedings of the ACM CCS (poster) (2014)

    Google Scholar 

  23. Welzel, A., Rossow, C., Bos, H.: On measuring the impact of DDoS botnets. In: Proceedings of the Seventh European Workshop on System Security, p. 3. ACM (2014)

    Google Scholar 

  24. Wustrow, E., Karir, M., Bailey, M., Jahanian, F., Huston, G.: Internet background radiation revisited. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 62–74. ACM (2010)

    Google Scholar 

  25. Xu, K., Zhang, Z.L., Bhattacharyya, S.: Profiling internet backbone traffic: behavior models and applications. ACM SIGCOMM Comput. Commun. Rev. 35, 169–180 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by National Science Foundation (NSF) under grant CNS-1117300. The views and opinions expressed in this paper are the views of the authors, and do not necessarily represent the policy or position of NSF or VeriSign, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, A., Mohaisen, A., Chang, W., Chen, S. (2015). Capturing DDoS Attack Dynamics Behind the Scenes. In: Almgren, M., Gulisano, V., Maggi, F. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2015. Lecture Notes in Computer Science(), vol 9148. Springer, Cham. https://doi.org/10.1007/978-3-319-20550-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20550-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20549-6

  • Online ISBN: 978-3-319-20550-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics