
Advances on Breathing Based Text Input
for Mobile Devices

Jackson Feijó Filho(&), Wilson Prata, and Thiago Valle

Nokia Technology Institute, Av. Torquato Tapajós, 7200 – Col Terra Nova,
Manaus, AM 69093-415, Brazil

+55 92 98134 0134

{jackson.feijo,wilson.prata,thiago.valle}@indt.org.br

Abstract. This paper highlights the progress of exploring a puffing activated
keyboard for mobile phones. This approach aims to stand as an assistive tech-
nology for users with motor disabilities. From the implementation of prior
versions we were able to identify recurring and persistent issues, such as
ambient noise handling and keyboard layout. Some of these issues were detected
during the experiments and some were reported by users. The advances
achieved in this work are narrated from the outcomes of the implementation and
experimentation of a mobile phone application that handles e.g. background
noise by performing signal processing and a new keyboard layout.

1 Introduction

People with disabilities have restricted opportunities in a lot of areas, and the field of
mobile technologies is no exception. A virtual environment offers the option to operate
or to function in the real world, reducing physical boundaries. Technology users are
likely to use their arms, hands, and fingers when using a mobile phone. Nonetheless,
for people with motor disabilities, the need for movements that require dexterity can be
a barrier for them to be able to interact with the phone [9].

Assistive technologies have been demanded, generally targeting users with severe
motor disabilities such as motor neuron disease (MND), amyotrophic lateral sclerosis
(ALS), spinal muscular atrophy, spinal cord injury, cerebral palsy, locked-in syndrome
and Guillain-Barrè Syndrome (GBS) [8]. There are many types of physical disabilities
that affect a pleasant human-computer interaction. As mentioned above, these diseases
cause muscle deterioration and/or neurological disorders and consequently result in
physical weakness, loss of muscle control, paralysis, and even amputation. In this
context, the central issue for these users is the capacity to access computer controls (i.e.
power/volume switch, menu items selection) and the aptitude to type on the regular
keyboard or move pointing devices like a mouse cursor.

Assistive solutions have been investigated and established as an important field in
human–computer interaction. Several forms of assistance have been produced for
technology consumers with particular disabilities that lessen their capabilities to
achieve inputting text on some devices. Several alternative interfaces for users with
motor disabilities have been developed and reported. Frequently, these solutions
include procedures that implement speech recognition methods, eye-trackers and

© Springer International Publishing Switzerland 2015
M. Antona and C. Stephanidis (Eds.): UAHCI 2015, Part I, LNCS 9175, pp. 279–287, 2015.
DOI: 10.1007/978-3-319-20678-3_27

sip-and-puff controllers. Speech recognition software is well accepted to be useful as
textual input aid, while additional hardware are usually employed as pointing devices,
allowing the control of e.g. the mouse pointer [2].

2 Related Work

Textual input and other interaction for people with motor disabilities and their phones
have challenged the academy and industry to investigate alternative software and
hardware solutions. These solutions will not depend on any manual interaction e.g.
keystroking, screen-touching. Text input through other physiological signals [1, 4] is
often considered. Speech recognition is also a solution used by the targeted audience.

2.1 Interaction Through Physiological Signals

Common physiological measures already used in previous Human Computer Interac-
tion (HCI) and Accessibility works include: cardiovascular, electrodermal, muscular
tension, ocular, skin temperature, brain activity and respiration measures [2]. These
solutions typically require extra hardware, which makes these alternatives more
expensive to final users. Not to mention they are ‘immobile’ computer oriented solu-
tions (desktops, laptops, etc.) and do not cover mobile phones. Some works present
sip-and-puff controlling that aims mobile devices, but requiring extra hardware.

2.2 Voice/Speech Recognition

Speech recognition is able to present itself as software based solution, which means no
extra hardware is needed. But it affects the privacy of the user, as it implies the
representation of whatever is being commanded through the form of speech to the
periphery auditory. Consider the use case where one has to perform a phone call from
within a bus. The user will obviously say out loud “call”. This may cause an unpleasant
situation when the user is not willing to share e.g. the contact being called. Some
hardware work has been developed to minimize peripheral representations of speech
and improve privacy, as in [1] but again this requires not only extra and expensive
hardware but the burden of wearing cochlear implants.

2.3 BLUI: Low-Cost Localized Blowable User Interfaces

BLUI [4] presents a form of hands-free interaction that can be implemented on
laptop/desktop computing platforms. This approach supports blowing at a laptop or
computer screen to directly control certain interactive applications. Localization esti-
mates are produced in real-time to determine where on the screen the person is
blowing. This work relies on a microphone, such as those embedded in a standard
laptop or one placed near a computer monitor. Even though this approach is: very
cost-effective, since no extra-hardware is required; silent and discrete, since no

280 J. Feijó Filho et al.

voice/speech is needed, it may not fit some mobile 158 computing platforms because:
mobile phones need simpler computing processes due to limited processing power, if
compared to laptops, desktops; several mobile phone interfaces are not based on
(mouse) pointers.

2.4 PuffText

This is an earlier version of the present solution. It proposes the use of a low-cost
software-based puff controlled hands-free spinning keyboard for mobile phones as an
alternative interaction technology for people with motor disabilities. It attempts to
explore the processing of the audio from the microphone in mobile phones to select
characters from a spinning keyboard. A proof of concept of this work is demonstrated
by the implementation and experimentation of a mobile application prototype that
enables users to perform text input through “puffing” interaction.

2.5 Text Entry Using Single-Channel Analog Puff Input

The purpose of this prototype [11] is to demonstrate a use of puff input for text entry. The
entry method is based on hierarchical scanning like selection of characters located in a
static table organized according to the letter frequency. The cursor is moved in a way
similar to operating a claw crane machine with two buttons. To move the cursor to the
target position the user needs to produce two puffs, the first selects the column, and the
second selects the row. With a brief training the method is capable of entry rate of 5 WPM.

This work has inspired the grid layout approach and the column-row, two step
selection.

3 Advances on Breathing Based Text Input
for Mobile Devices

From the several experiments and interviews performed during [10, 12], we were able
to identify significant and recurrent issues concerning puff-based interfaces for mobile
devices, some of which we aim to address in this work, as an evolution from [7].

3.1 Ambient Noise

In [12] the detection of a puff was being performed with a simple sound level peak,
using the phone’s microphone. Whenever the solution was tested on rooms with a lot of
noise, a high number of false positives was detected. Even when the sound level
threshold was adjusted, if e.g. someone spoke with a 68–76 dB level (normal voice
speaking [16]) the software would trigger a puff.

To address the proper detection of the puffs, we used a Fast Fourier Transform
(FFT) algorithm, as implemented in [3, 17]. This has also enabled a puff calibration
feature, in order to adjust the puff detection to a more customized use.

Advances on Breathing Based Text Input for Mobile Devices 281

3.2 Using FFT to Process Signal from the Microphone on Mobile Phones

In this investigation, we are targeting a Windows Phone 8.1 enabled device to
implement the system and perform experiments. The code below shows part of the
sound matching procedure:

void microphone_BufferReady(object sender, EventArgs e)
{

if (buffer.Length <= 0) return;

// Retrieve audio data

 microphone.GetData(buffer);

double rms = 0; double volume = 0;

double cMagnitude = 0;

double cPhase = 0;

double[] sampleBuffer = new double[

FFT.FourierTransform.NextPowerOfTwo((uint)buffer.Length)];

double[] xre = new double[sampleBuffer.Length]; //

Real part

double[] xim = new double[sampleBuffer.Length]; //

Imaginary part

double[] spectrum = new double[sampleBuffer.Length /

sampleSize];

for (int i = 0; i < 2048; i += 2)

{

 sampleBuffer[index] = Con-
vert.ToDouble(BitConverter.ToInt16((byte[])buffer, i)); index++;

}

 FFT.FourierTransform.Compute((uint)sampleBuffer.Length,
sampleBuffer, null, xre, xim, false);

for (int i = 0; i < 512; i++)
{

 rms += Math.Pow((10.0 *

Math.Log10((float)(Math.Sqrt((xre[i] * xre[i]) + (xim[i] *

xim[i]))))), 2);

 cMagnitude = (float)(Math.Sqrt((xre[i] *

xre[i]) + (xim[i] * xim[i]))); // Magnitude

 cPhase = (float)(Math.Atan(xim[i] /

xre[i])); // Phase

 spectrum[i] = cMagnitude;
 cMagnitude = 0; cPhase = 0;

}

 rms /= (double)512;

 volume = (int)Math.Floor(Math.Sqrt(rms));
}

282 J. Feijó Filho et al.

At time of writing, in Windows Phone, the sample rate is fixed at 16.000 audio
samples per second. According to the Nyquist sample theorem [14], this is appropriate
for recording audio up to a frequency of 8 kHz. This is suitable for primitive simple
sound sources, like human voice or puffs, but not so efficient with e.g. music.

Each sample is 2 bytes wide and monaural. This implies that each second of
recorded sound requires 32 KB, and each minute requires 1.9 MB.

The TimeSpan value is the only option that microphone allows you to specify
through the byte size of the buffer passed on GetData(). The BufferDuration property
(which is of type TimeSpan) value, must range between 100 ms and 1000 ms (one
second) in increments of 10 ms.

Assuming TimeSpan is 100 ms, this means that each time microphone.BufferReady
is called we receive a buffer of size 3200 bytes/1600 audio samples.

FFT functions with a number of samples that is a power of two. Applying the FFT
to the first 1024 samples means that the frequency resolution

Df ¼ 16000 = 1024 ¼ 15:625

The magnitude of each FFT resulting element is referred to the frequencies

Df; 2Df; 3Df; . . .; k=2 � 1ð ÞDf or fs=2ð Þ

The most trivial form of sound pattern matching we might use would be to compare
the two spectrum magnitudes, calculating the MSE. If the values differentiate within a
determined threshold, the puff is detected. Unfortunately this simple approach may not
be particularly effective – making puffs using more or less volume can affect the
frequency components enough to fail the comparison.

This work uses a more advanced approach, named MFCC (Mel-frequency cepstral
coefficients [15]) instead. This method extracts and compares key features in sounds.
This approach is more efficient than the simple spectrum comparison - and it is less
influenced by ambient noise or the volume of the tone.

The tutorial on [13] provide more in-depth information about FFT on Windows
Phone devices.

3.3 Keyboard Layout

The keyboard layout on [7] helped us identify one recurrent issue during the
experiments.

Figures 1 and 2 shows the user interface of the layout from [7], where that the keys
are arranged linearly and in alphabetical order. This means that if the cursor is standing
in front of e.g. “F” and the user wants to select the letter “E”, he would have to wait
until the cursor moves through the whole keyboard until he has another chance to select
letter “E”.

The work in [11] provides a grid layout of keyboard. The cursor is moved in a way
similar to operating a claw crane machine with two buttons. To move the cursor to the
target position the user needs to produce two puffs, the first selects the column, and the

Advances on Breathing Based Text Input for Mobile Devices 283

second selects the row. We have reformed this layout and cursor movement pattern
approach to the present work (Fig. 3).

Fig. 1. Screenshot of the first version of PuffText, with a linear round keyboard.

Fig. 2. Later version of PuffText, showing a graphical representation of audio volume.

284 J. Feijó Filho et al.

4 Experiments

For this round of experiments and interviews we have recruited the some of the same
subjects as [7]. On the beginning of this round, we instantly noticed significant
improvement in the subject’s performance, due to training. Drafting repeated subjects
also enabled us to reduce learning session’s time and invest more time on training
sessions with the new interface.

As soon as we reached the current implementation, 4 rounds of tests were
conducted.

Each round consisted in one trying to perform the task of inputting a given text of
47 words.

Some text entry features, such as text prediction are still being tested, for pre-
liminary evaluation simplification. Future works may include a more in depth analysis
of the first 2 rounds were meant to be purely instructional. After that, 6 rounds of
entering text using the present solution were timed. Three able-bodied and five dis-
abled, high school students of 15*18 years old, were tested.

The disabled group represented two types of disabilities: having no arms (birth
defects) or lack of motor dexterity (due to accidents). The three subjects in this group
are unable to handgrip a mobile phone manually.

The users were instructed to keep the distance of approximately 20, 30 and 50 cm
during the first three rounds of tests.

These rounds of tests were meant to evaluate, emphatically:

• Puff accuracy at distance

Fig. 3. Grid layout and column-row selection of letters.

Advances on Breathing Based Text Input for Mobile Devices 285

• Background noise immunity – testing ambient noise handling with FFT algorithm
• Shortness of breath due to application usage
• Learnability of column-row letter selection interaction
• Memorability of column-row letter selection interaction
• Speed
• Typing mistakes

5 Results and Discussion

A proof-of-concept application was implemented to perform tests in order to support
the argument of this work. The mobile application is able to deliver a way for users to
perform text input with a hands-free, speech-free manner. This approach is software
based, meaning it will not require extra hardware to function. It also presents itself as a
rather discreet and private application, as it implies minimum representation (just puffs)
of whatever is being inputted, to the periphery auditory.

The final fastest typing rate registered with this study group (able-bodied and
disabled) and the given text was 8.8 words per minute and the average was 7.2.
Compare to [6] were a Morse code typist makes 12.6 and a Mouth stick (hardware
based) input solution gives 7.88 words per minute. The WPM was measured through
logging character/timestamp in a text file on the phone and performing post-test
calculation.

The distance of 20 and 30 cm from the user to the phone represented very little
difference, although it was observed that the users tended to puff harder when the phone
was moved slightly back (10 cm). Even though no shortness of breath episode was
noted for these distances, an uninstructed user might report feeling winded. Future
works may include a more in-depth analysis of shortness of breath due to puff con-
trolled interfaces.

At the distance of 50 cm we were able to note various unsuccessful attempts, false
positives due to background noise and minor shortness of breath. Users described
feeling “far from the phone, even for reading”.

Background noise handling algorithm adapts sound level peak threshold and
microphone gain to reduce false positives and increase overall performance. The puffs
– from a controlled distance of < 25 cm, were detected to a nearly zero false positive
performance.

References

1. Arroyo-Palacios, J., Romano, D.M., Exploring the use of a respiratory-computer interface
for game interaction. Paper presented at the IEEE Consumer Electronics Society Games
Innovation ICE-GIC 2009, London, pp. 154–159 (2009)

2. Sibert, L.E., Jacob, R.J.K.: Evaluation of eye gaze interaction. In: Proceedings of CHI 2000
Conference on Human Factors in Computing Systems. ACM Press, The Hague, pp. 281–288
(2000)

286 J. Feijó Filho et al.

3. Patel, S., Abowd, G., BLUI: Low-cost localized blowable user interfaces. In: Proceedings of
the 20th Annual ACM Symposium (2007)

4. Jones, M., Grogg, K., Anschutz, J., Fierman, R.: A sip-and-puff wireless remote control for
the apple iPod. Assist. Technol. Off. J. RESNA 20(2), 107–110 (2008)

5. Sporka, A.J., Kurniawan, S.H., Slavík, P.: Whistling user interface (U3I). In: The 8th
ERCIM International Workshop “User Interfaces For All”, Vienna, Austria (2004)

6. Levine, S., Gauger, J., Bowers, L., Khan, K.: Comparison of mouth stick and morse code
text inputs. Augment. Altern. Commun. 2(2), 51–55 (1986)

7. Filho, J.F, Valle, T., Prata, W.: Explorations on breathing based text input for mobile
devices. In: Proceedings of the 16th International ACM SIGACCESS Conference on
Computers and Accessibility, pp. 345–346, ACM (2014)

8. Majaranta, P., Räihä, K.J.: Text entry by gaze: Utilizing eye-tracking. In: MacKenzie, I.S.,
TanakaIshii, K. (eds.) Text Entry Systems: Mobility Accessibility, Universality. Morgan
Kaufmann, San Francisco (2007)

9. Stéphane, N., Lobo, F.G.: A virtual logo keyboard for people with motor disabilities.
ACM SIGCSE Bull. 39(3), 111–115 (2007)

10. Filho, J.F., Prata, W., Valle, T.: Breath mobile: a low-cost software-based breathing
controlled mobile phone interface. In: Proceedings of the 14th International Conference on
Human-Computer Interaction with Mobile Devices and Services companion, pp. 157–160,
ACM (2012)

11. Sporka, A.J.: Text entry using single-channel analog puff input. In: Proceedings of the 16th
International ACM SIGACCESS Conference on Computers and Accessibility, pp. 359–360,
ACM (2014)

12. Filho, J.F., Prata, W., Valle, T.: PuffText: a voiceless and touchless text entry solution for
mobile phones. In: Proceedings of the 15th International ACM SIGACCESS Conference on
Computers and Accessibility, p. 63, ACM (2013)

13. Galazzo, S.: Sound pattern matching using Fast Fourier Transform in Windows Phone,
(2013). http://developer.nokia.com/community/wiki/Sound_pattern_matching_using_Fast_
Fourier_Transform_in_Windows_Phone

14. Nyquist-Shannon Sampling Theorem. http://en.wikipedia.org/wiki/Nyquist%E2%80%
93Shannon_sampling_theorem

15. Mel-frequency Cepstrum. http://en.wikipedia.org/wiki/Mel-frequency_cepstrum
16. American Speech-Hearing Association. http://www.asha.org/public/hearing/Noise/
17. Sakamoto, D., Takanori, K., Takeo, I.: Voice augmented manipulation: using paralinguistic

information to manipulate mobile devices. In: Proceedings of the 15th International
Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 69–78,
ACM (2013)

Advances on Breathing Based Text Input for Mobile Devices 287

http://developer.nokia.com/community/wiki/Sound_pattern_matching_using_Fast_Fourier_Transform_in_Windows_Phone
http://developer.nokia.com/community/wiki/Sound_pattern_matching_using_Fast_Fourier_Transform_in_Windows_Phone
http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Mel-frequency_cepstrum
http://www.asha.org/public/hearing/Noise/

	Advances on Breathing Based Text Input for Mobile Devices
	Abstract
	1 Introduction
	2 Related Work
	2.1 Interaction Through Physiological Signals
	2.2 Voice/Speech Recognition
	2.3 BLUI: Low-Cost Localized Blowable User Interfaces
	2.4 PuffText
	2.5 Text Entry Using Single-Channel Analog Puff Input

	3 Advances on Breathing Based Text Input for Mobile Devices
	3.1 Ambient Noise
	3.2 Using FFT to Process Signal from the Microphone on Mobile Phones
	3.3 Keyboard Layout

	4 Experiments
	5 Results and Discussion
	References

