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Abstract. In order to ease the daily activities in life, a growing number
of sophisticated embedded systems is integrated into a users environ-
ment. People are in need to communicate with the machines embedded
in the surroundings via interfaces which should be as natural as possible.
A very natural way of interaction can be implemented via gestures. Ges-
tures should be intuitive, easy to interpret and to learn. In this paper, we
propose a method for in-the-air gesture recognition within smart environ-
ments. The algorithm used to determine the performed gesture is based
on dynamic time warping. We apply 12 capacitive proximity sensors as
sensing area to collect gestures. The hand positions within a gesture are
converted into features which will be matched with dynamic time warp-
ing. The gesture carried out above the sensing area are interpreted in
realtime. Gestures supported can be used to control various applications
like entertainment systems or other home automation systems.

Keywords: Gesture recognition · Dynamic time warping · Capacitive
proximity sensing

1 Introduction

In-the-air gesture recognition within smart environments offers a number of
highly promising application scenarios. They range from increasing hygiene in
public restrooms to touchless interactions with infrastructure, such as doors.
In this paper, we investigate the use of a proximity-sensing surface in smart
environments. Being based on capacitive sensing, it can detect human interac-
tions within distances of up to 30 cm [4]. The surface can be attached to walls,
placed within doors, or integrated underneath tables. A particular challenge is
the design of computationally-cheap algorithms for recognizing gestures. In this
work, we identify relevant gestures based on a number of potential use-cases and
propose a generic method for gesture recognition. It employs computationally
inexpensive algorithms that can be implemented on low-cost embedded systems.
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Latest developments in our society lead to the use of smart technologies
that simplify everyday activities in life. More and more applications in the areas
of human machine interfaces are demanded, all having the same goal of sens-
ing human interactions in a more or less natural manner. Capacitive gesture-
recognition systems are able to fulfill this need while offering highly interactive
system designs at low cost. A great benefit of capacitive sensing is the ability of
being installed unobtrusively under any non-conductive surface.

Fig. 1. A proximity-sensing surface acting as a door opener from [5]. Users are able to
open and close the door based on swipe-gestures.

In order to specify the requirements for our proposed gesture-recognition
method, we identified a number of use-cases.

1. Interaction with a smart door (shown in Fig. 1): Due to hygiene consideration
in a public restroom, it will be practical to open, lock, unlock and close the
door without touching the doorknob. The state of the door (e.g. locking it)
can be easily changed using simple hand gestures, as introduced in [5].

2. Controlling roller blinds: A proximity-sensing surfaces can be used to open
and close the roller. Here, vertical swipe gestures offer a natural way of con-
trolling the appliance.

3. Controlling Entertainment Systems: Those supported gestures can be used
to control a music player or other entertainment applications.

4. Soft authentication in restricted areas: By carrying out an authentication
gesture, doors can be locked or unlocked. Moreover, alarms can be switched
off in combination with occupancy detection.

5. Controlling lights and illumination: Gestures in front of a proximity-sensing
surface can be employed to turn lights on and off. Moreover, circular gestures
allow to dim the lights to ones needs.
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2 Related Work

Providing means for natural interaction is an important goals when designing
smart environments. For example, the user could switch on a standing lamp
just with a simple hand gesture when she or he enters the room. It is also
possible to use the whole body for interaction, for example by analyzing postures
on furniture [6]. However, in this paper we aim at recognizing gestures carried
out by a human hand. Many different modalities have been applied for gesture
recognition, many of them based on cameras like the Microsoft Kinect [9]. Other
modalities include capacitive approaches, for example by using body-attached
electric field sensors [3], or ultrasound [7].

Camera based gesture recognition uses image processing and statistical meth-
ods like HMMs or DTW to perform gestures recognition. However, computer
vision approaches are computationally expensive, as the bandwidth of informa-
tion is very large. Here, the challenge is to efficiently extract information needed
in a short time, in order to perform live gesture recognition. Capacitive sens-
ing on the other hand is low power and efficient. Using this modality, several
gesture recognition methods have been investigate, like [2] or the Swiss-Cheese
Extended Algorithm presented in [4]. In the latter work, the authors use models
to eliminate areas, in which no object may exists. Object tracking is performed
with a particle filter to measure which predicts the new user’s hand position
above the sensing area. The algorithm is able to recognize and track multiple
hands in real time. As this approach may not be executed on a microcontroller,
we will present an approach based on Dynamic Time Warping (DTW).

DTW is a widely used method to perform gesture recognition. In [10], the
authors developed a microcontroller-optimized implementation to warp a long
common subsequence with a reference sequence and feedback the spotted sub-
sequence in real time. This implementation can also be used to detect the QRS
complex in a long ECG time signal as well as to detect a predefined gestures
within a time sequence. Very similarly, we will use DTW as a basis for our ges-
ture recognition method in this paper. In the next chapter, the chosen method
for gesture recognition above a capacitive sensing area will be explained in detail.

3 Proposed Gesture Recognition Model

As we intend the proximity-sensing surface to be low-cost and installed ubiq-
uitously in a user’s environment, our focus lies on computationally inexpensive
algorithms. The implementation was realized based on the Rainbowfish plat-
form [4], which is depicted in Fig. 1. It consists of 12 transparent electrodes each
serving as a capacitive proximity sensor. The overall proximity sensing surface
of the Rainbwofish has a dimension of 40 cm × 25 cm containing 12 rectangular
transparent electrodes used for determining the position of a human hand. It is
also possible to feedback live performed user actions using LED lights integrated
beneath the transparent platform, which can also be seen in the depicted figure.
Object localization above the sensing surface is performed using a straightfor-
ward weighted averaging method developed by [1], which offers a fast way of
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position calculation. To provide a smoother localization, a 2D position estima-
tion Kalman Filter is also implemented. The estimated position by Kalman Filter
is further improved by the measurement.

The next major step is the gesture recognition and thus its interpretation,
in order to make interaction between user and their environment possible. With
our proposed method we can quickly and almost confidently detect a set of
simple hand gestures based on the traditional dynamic time warping method.
All recognizable gestures so far using single hand is listed in the Fig. 2. In the
following sections the implementation will be further explained in detail aiming
to give you an better impression of how gesture recognition is done.

Fig. 2. Figure illustrates all confidently recognizable simple hand gestures using
dynamic time warping method.

3.1 Dynamic Time Warping

The method of dynamic time warping presented in [8] is used to compare two
time series, while one of them is usually based on a template database of reference
hand gestures. In order to find the best match of a given time series compared to a
template database, a cost function is calculated for two sequences prepared. The
best match with the highest score, or the lowest cost, will be the intended hand
gesture out of the predefined database. The mapping is performed in a nonlinear
fashion, since the length of a performed gesture can be varied which depend on
the gesture’s speed. Therefore, the two time series could be non-linearly scaled
in order to optimally match each other.

Following this approach brings in one constraint: the first element and the
last elements of both time series should be mapped together, which is the so
called boundary condition. Suppose we have two time series A = (ai) with
Index i = 1..N and B = (bj) with Index j = 1..M , whereas the length of both
sequences could be different. We are looking for an optimal path between these
two sequences with the smallest score, whereat (a1, b1) and (aN , bM ) should
be mapped together. The concept is illustrated in Fig. 3. The score matrix of
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dimension NxM can be built comparing elements of both time series with each
other. The path through the score matrix will always be the sum of the smallest
score differences. Possible scores can be built using the Euclidean distance, some
error measures or other self-defined scores adapted to the individual need.

Fig. 3. Figure illustrates the method of dynamic time warping. Two different sequences
A and B are aligned to each other in an optimum path using minimum score.

3.2 Implementation

As described in the introduction, a time series of hand positions will be sampled
in time into a discrete sequence. Depending on the duration above the sensing
area, the gesture can be of different lengths. Each short sequence within the
gesture is converted into features, which is used to conduct the time warping
method in order to interpret the performed gesture. In the following paragraph,
the feature extraction will be explained in detail. The feature representation is
illustrated in Fig. 4 with a simple circular chart diagram. The radial component
of this circular chart represents the velocity component of the consisting part
of a gesture. One single gesture is sampled in consisting hand positions above
the sensing area. From one sample point to the successive sample point the
velocity component will be calculated. If it is below a certain threshold, it will
be interpreted as an indecisive slow movement and will be represented with the
character Z. Otherwise, the angular movement of the velocity component will
be calculated and mapped adequately to the appropriate angular character. The
start of the gesture is set, if the user’s hand is above the sensing area and thus
the starting command will be filled with a character S symbolizing the start
of this gesture. The ongoing gesture is evaluated as long as the gesture can be
recognized and the final termination of the determined gesture can be set by
leaving the sensing area. As soon as the user’s hand leaves the sensing area,
the end character E will be added to the command stream. An E can also be
generated when the hand remains above a certain point for a longer time. This
ensures that there is no obligation of leaving the surface with the hand. The
definition of the used character can be found in Table 1.
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Table 1. The meaning of the characters used in the dynamic time warping method.

Character Definition

S Start of a gesture

Z Slow velocity component between two successive parts of a gesture

D Angular component indicating horizontal movement from left to right

B Angular component indicating horizontal movement from right to left

C Angular component indicating vertical movement from high to low

A Angular component indicating vertical movement from low to high

E End of a gesture

Fig. 4. The figure illustrates the way how the tangent of relative movement is mapped
to the respective string character. A character S will be added, when the user’s hand is
detected on the sensing area for the first time and the character E will be added when
no object is above the sensing plane. As long as the relative movement is small, the
character Z is added, otherwise the other characters in the circle chart will be added
accordingly.

The graphical interpretation of the angular distribution with respect to their
corresponding string characters can be seen in Fig. 4. Due to the geometric prop-
erty of the sensing area, where the length is broader than the width, it is reason-
able to chose the angular distribution such that it is in favor of the horizontal
movement. Caused by the larger x-axis with respect to the y-axis, the user has
more freedom and precision by performing horizontal swipes.

An exemplary template for horizontal gesture moves from left to the right
can be represented by a sequence like SDDDE, whereas real-world may also
contain noise such as SDDDZZDDDE. Therefore, the temporally stretched
real-world strings will be compared with all possible reference command strings.
The reference gesture with the lowest score and thus the highest matching score
is the intended user gesture. One special cost function and it’s distance function
can be seen in the Figs. 5 and 6.
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Fig. 5. The cost function for the collected
performed gesture on the x-axis with the
reference string on the y-axis is depicted.
The cost is 1, if the character is mis-
matched.

Fig. 6. The dist function is depicted
in the figure. The yellow path follows
the best alignment from the end of the
sequence backwards to the beginning of
the sequence (Color figure online).

With following assumptions, I used two additional weighting functions to
further improve the cost of the dynamic time warping method, which are both
of temporary and spatially natures. Since the sensing area is large, the gesture
performed in the middle of the sensing area should be more intended and precise
as on the boarder of the sensing area. Therefore the spatial weighting function
will be given by the Eq. 1.

w(x, y) = 1 − A · exp
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The uncertainty in the y direction is larger, since as mentioned previously the
geometric dimension of the x direction is larger than the y direction. In Eq. (1)
L means the length

L = xmax − xmin

and W means the width
W = ymax − ymin

of the sensing area and A is a constant factor. The penalty is the smallest in the
middle of the sensing area and enlarged at both sides as can be seen from Fig. 7.
Furthermore I presume that the gesture in the middle of the time sequence is
more intended and precise than at the beginning or at the end of a gesture.
Suppose the length of the command sequence is L, then the weighting function
can be give by Eq. 2.
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In Eq. 2 the index n stands for the index of character collected in time and
L is the number of the overall gesture collected so far. The penalty is larger at
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Fig. 7. The spatial weighting function in Eq. 1 with W = 25 cm, L = 40 cm and
σy = 1.6.

the beginning and the end of a sequence, while the penalty is zero exactly in the
middle of the sequence.

The software realization can be found in the flow chart in Fig. 8. The capac-
itive sensors keep actively measuring the activities above the sensing area. Once
it detects the presence of a user’s hand, the start character S will be added to
the command sequence. Afterward it keeps reading sensor values to update the
gesture. The corresponding string command keeps adding to the existing com-
mand sequence. The algorithm keeps detecting the gesture performed by the
user in realtime, as long as the user’s hand does not leave the sensing area. As
soon as the user’s hand leaves the sensing area, the last gesture will be analyzed
and afterward the command sequence will be cleared, such that the system will
be ready for a new gesture.

4 Validation and Interpretation

Based on a user study conducted with 10 different test persons, we evaluated the
feasibility of our proposed method. Each test person was supposed to execute
the presented gestures given in Fig. 2. Each gesture was performed ten times
above the sensing area. The result is evaluated and summarized in the confusion
matrix, which is shown in Table 2.

From the confusion matrix given in Table 2, we can seen that the circular
movements can be detected with a true positive rate of more than 98 %, while
the other simple linear gestures can be assigned a true positive rate of more
than 90 % as well. It is quite apparent, that the performed circular movements
clockwise or anticlockwise are recognized with very high accuracy, while the
simple linear movements are less accurate, but still with a detection rate of over
90 %. Simple linear movements is less error prone, since the capacitive sensing
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Fig. 8. Figure illustrates the flow chart of the software implementation.
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Table 2. The table shows the confusion matrix.

area is too sensitive, that it measures every tiny movements above the sensing
area. The recoginition rate is high, if the gesture are clearly performed.

To have a more precise expression of how the method works, we use the
precision and recall matrix (Table 3).

Table 3. The table shows the precision and recall matrix.

Gestures Precision Recall

Swipe Right 0.89 0.92

Swipe Left 0.98 0.96

Swipe Upward 0.91 0.95

Swipe Down 0.95 0.90

Circular Clockwise 0.98 0.98

Circular Anticlockwise 0.99 0.98

5 Conclusion and Outlook

In this paper, the proposed gesture recognition was successfully realized using
dynamic time warping method. A user study is conveyed and the results are
evaluated and summarized. It showed that the circular movements clockwise or
anticlockwise can be detected with very high accuracy, while the simple linear
movements are somehow not so error prone. But all in all, the allowed gestures
can be detected with quite high certainty in real time. The implementation is
simple and can be coded on a simple micro-controller. In the near future, further
goal is to expand gesture recognition with both hands accomplishing different
more complicated gestures on the left and right side of the sensor board. We
hope to allow more complex interactions with the environment, such as turning
a virtual key gestures, and further more natural gestures performed with both
hands.
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Aghajan, H., Kröse, B.J.A. (eds.) AmI 2011. LNCS, vol. 7040, pp. 314–323.
Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-25167-2 43

7. Gupta, S., Morris, D., Patel, S., Tan, D.: Soundwave: Using the doppler effect to
sense gestures. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2012, pp. 1911–1914. ACM, New York (2012). http://
doi.acm.org/10.1145/2207676.2208331

8. Kruskal, J.B., Liberman, M.: The symmetric time-warping problem: from contin-
uous to discrete. In: Sankoff, D., Kruskal, J.B. (eds.) Time Warps, String Edits,
and Macromolecules - The Theory and Practice of Sequence Comparison, chap. 4.
CSLI Publications, Stanford (1999)

9. Pheatt, C., Wayman, A.: Using the xbox kinect&trade; sensor for gesture
recognition. J. Comput. Sci. Coll. 28(5), 226–227 (2013). http://dl.acm.org/
citation.cfm?id=2458569.2458617

10. Roggen, D., Cuspinera, L.P., Pombo, G., Ali, F., Nguyen-Dinh, L.-V.: Limited-
memory warping LCSS for real-time low-power pattern recognition in wireless
nodes. In: Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol.
8965, pp. 151–167. Springer, Heidelberg (2015)

http://doi.acm.org/10.1145/1579114.1579164
http://dl.acm.org/citation.cfm?doid=2141622.2141641
http://dl.acm.org/citation.cfm?doid=2141622.2141641
http://doi.acm.org/10.1145/2207676.2208330
http://www.opencapsense.org/fileadmin/opencapsense-org/publications/chi2014.pdf
http://www.opencapsense.org/fileadmin/opencapsense-org/publications/chi2014.pdf
http://dx.doi.org/10.1007/978-3-319-07788-8_10
http://dx.doi.org/10.1007/978-3-642-25167-2_43
http://doi.acm.org/10.1145/2207676.2208331
http://doi.acm.org/10.1145/2207676.2208331
http://dl.acm.org/citation.cfm?id=2458569.2458617
http://dl.acm.org/citation.cfm?id=2458569.2458617

	A Gesture Recognition Method for Proximity-Sensing Surfaces in Smart Environments
	1 Introduction
	2 Related Work
	3 Proposed Gesture Recognition Model
	3.1 Dynamic Time Warping
	3.2 Implementation

	4 Validation and Interpretation
	5 Conclusion and Outlook
	References


