Skip to main content

A Differential Approach for Staged Trees

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2015)

Abstract

Symbolic inference algorithms in Bayesian networks have now been applied in a variety of domains. These often require the computation of the derivatives of polynomials representing probabilities in such graphical models. In this paper we formalise a symbolic approach for staged trees, a model class making it possible to visualise asymmetric model constraints. We are able to show that the probability parametrisation associated to trees has several advantages over the one associated to Bayesian networks. We then continue to compute certain derivatives of staged trees’ polynomials and show their probabilistic interpretation. We are able to determine that these polynomials can be straightforwardly deduced by compiling a tree into an arithmetic circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonucci, A., de Campos, C.P., Huber, D., Zaffalon, M.: Approximating Credal Network Inferences by Linear Programming. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 13–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Barclay, L.M., Hutton, J.L., Smith, J.Q.: Refining a Bayesian network using a Chain Event Graph. Int. J. Approx. Reason. 54, 1300–1309 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barclay, L.M., Hutton, J.L., Smith, J.Q.: Chain event graphs for informed missingness. Bayesian Anal. 9(1), 53–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandherm, B., Jameson, A.: An extension of the differential approach for Bayesian network inference to dynamic Bayesian networks. Int. J. Intell. Syst. 19(8), 727–748 (2004)

    Article  MATH  Google Scholar 

  5. Castillo, E., Gutiérrez, J.M., Hadi, A.S.: A new method for efficient symbolic propagation in discrete Bayesian Networks. Networks 28(1), 31–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cowell, R.G., Smith, J.Q.: Causal discovery through MAP selection of stratified Chain Event Graphs. Electron. J. Stat. 8, 965–997 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Darwiche, A.: A differential approach to inference in Bayesian networks. J. ACM 50(3), 280–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dawid, A.P.: Conditional independence in statistical theory. J. Roy. Stat. Soc. B 41(1), 1–31 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Görgen, C., Smith, J.Q.: Equivalence Classes of Chain Event Graph Models. In preparation

    Google Scholar 

  10. Jordan, M.I.: Graphical models. Stat. Sci. 19(1), 140–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Stat. Soc. B 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Leonelli, M., Smith, J.Q., Riccomagno, E.: Using computer algebra for the symbolic evaluation of discrete influence diagrams. Technical report, CRISM (2015)

    Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  14. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, Cambidge (2000)

    MATH  Google Scholar 

  15. Pistone, G., Riccomagno, E., Wynn, E.P.: Gröbner bases and factorisation in discrete probability and Bayes. Stat. Comput. 11, 37–46 (2001)

    Article  MathSciNet  Google Scholar 

  16. Riccomagno, E.: A short history of algebraic statistics. Metrika 69(2–3), 397–418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shafer, G.: The Art of causal Conjecture. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  18. Smith, J.Q.: Bayesian Decision Analysis: Principles and Practice. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  19. Smith, J.Q., Anderson, P.E.: Conditional independence and Chain Event Graphs. Artif. Intell. 172, 42–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thwaites, P.A., Smith, J.Q.: Separation theorems for Chain Event Graphs. CRiSM 11–09 (2011)

    Google Scholar 

  21. Thwaites, P.A., Smith, J.Q., Riccomagno, E.: Causal analysis with Chain Event Graphs. Artif. Intell. 174, 889–909 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuele Leonelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Görgen, C., Leonelli, M., Smith, J.Q. (2015). A Differential Approach for Staged Trees. In: Destercke, S., Denoeux, T. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2015. Lecture Notes in Computer Science(), vol 9161. Springer, Cham. https://doi.org/10.1007/978-3-319-20807-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20807-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20806-0

  • Online ISBN: 978-3-319-20807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics