Skip to main content

Synthesis of Quantum Circuits for Dedicated Physical Machine Descriptions

  • Conference paper
  • First Online:
Reversible Computation (RC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9138))

Included in the following conference series:

Abstract

Quantum computing has been attracting increasing attention in recent years because of the rapid advancements that have been made in quantum algorithms and quantum system design. Quantum algorithms are implemented with the help of quantum circuits. These circuits are inherently reversible in nature and often contain a sizeable Boolean part that needs to be synthesized. Consequently, a large body of research has focused on the synthesis of corresponding reversible circuits and their mapping to the quantum operations supported by the quantum system. However, reversible circuit synthesis has usually not been performed with any particular target technology in mind, but with respect to an abstract cost metric. When targeting actual physical implementations of the circuits, the adequateness of such an approach is unclear. In this paper, we explicitly target synthesis of quantum circuits at selected quantum technologies described through their Physical Machine Descriptions (PMDs). We extend the state-of-the-art synthesis flow in order to realize quantum circuits based on just the primitive quantum operations supported by the respective PMDs. Using this extended flow, we evaluate whether the established reversible circuit synthesis methods and metrics are still applicable and adequate for PMD-specific implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  4. Shende, V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. on CAD 22(6), 710–722 (2003)

    Article  Google Scholar 

  5. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. on CAD 25(11), 2317–2330 (2006)

    Article  Google Scholar 

  6. Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209, August 2007

    Google Scholar 

  7. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: ACM Design Automation Conference, pp. 270–275, July 2009

    Google Scholar 

  8. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conference, January 2012

    Google Scholar 

  9. Lin, C.-C., Jha, N.K.: RMDDS: Reed-Muller decision diagram synthesis of reversible logic circuits. ACM J. Emerg. Technol. Comput. Syst. 10(2) (2014)

    Google Scholar 

  10. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. The American Physical Society 52, 3457–3467 (1995)

    Google Scholar 

  11. Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: Design, Automation and Test in Europe Conference, pp. 1208–1213 (2005)

    Google Scholar 

  12. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: Int. Symposium on Multiple-Valued Logic, pp. 288–293 (2011)

    Google Scholar 

  13. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: ASP Design Automation Conference, pp. 145–150, January 2013

    Google Scholar 

  14. ARDA: Quantum computation roadmap. http://qist.lanl.gov/qcomp_map.shtml

  15. Lin, C.-C., Chakrabarti, A., Jha, N.K.: Optimized quantum gate library for various physical machine descriptions. IEEE Trans. on Very Large Scale Integration (VLSI) Systems 21(11), 2055–2068 (2013)

    Article  Google Scholar 

  16. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for large reversible circuits. In: Design, Automation and Test in Europe Conference, pp. 1204–1207 (2011)

    Google Scholar 

  17. Taylor, J.M., Petta, J.R., Johnson, A.C., Yacoby, A., Marcus, C.M., Lukin, M.D.: Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76 (2007)

    Google Scholar 

  18. Strauchand, F.W., Johnson, P.R., Dragt, A.J., Lobb, C.J., Anderson, J.R., Wellstood, F.C.: Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91 (2003)

    Google Scholar 

  19. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    Article  Google Scholar 

  20. Deutsch, I., Brennen, G., Jessen, P.: Quantum computing with neutral atoms in an optical lattice. Fortschritte der Physik [Progress of Physics] 48, 925–943 (2000)

    Article  Google Scholar 

  21. Briegel, H.J., Calarco, T., Jaksch, D., Cirac, J.I., Zoller, P.: Quantum computing with neutral atoms. Journal of Modern Optics 47, 415–451 (2000)

    Article  MathSciNet  Google Scholar 

  22. Knil, E., LaFlamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  Google Scholar 

  23. Inoue, S.I., Aoyagi, Y.: Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  24. Lin, C.-C., Chakrabarti, A., Jha, N.K.: FTQLS: Fault-tolerant quantum logic synthesis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22(6), 1350–1363 (2014)

    Article  Google Scholar 

  25. Lin, C.-C., Chakrabarti, A., Jha, N.K.: QLib: Quantum module library. ACM J. Emerg. Technol. Comput. Syst. 11(1) (2014)

    Google Scholar 

  26. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Int. Symposium on Multiple-Valued Logic, pp. 220–225 (2008). http://www.revlib.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Niemann, P., Basu, S., Chakrabarti, A., Jha, N.K., Wille, R. (2015). Synthesis of Quantum Circuits for Dedicated Physical Machine Descriptions. In: Krivine, J., Stefani, JB. (eds) Reversible Computation. RC 2015. Lecture Notes in Computer Science(), vol 9138. Springer, Cham. https://doi.org/10.1007/978-3-319-20860-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20860-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20859-6

  • Online ISBN: 978-3-319-20860-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics