Skip to main content

A New Evolutionary Approach to Geotechnical and Geo-Environmental Modelling

  • Chapter
Handbook of Genetic Programming Applications

Abstract

In many cases, models based on certain laws of physics can be developed to describe the behaviour of physical systems. However, in case of more complex phenomena with less known or understood contributing parameters or variables the physics-based modelling techniques may not be applicable. Evolutionary Polynomial Regression (EPR) offers a new way of rendering models, in the form of easily interpretable polynomial equations, explicitly expressing the relationship between contributing parameters of a system of complex nature, and the behaviour of the system. EPR is a recently developed hybrid regression method that provides symbolic expressions for models and works with formulae based on pseudo-polynomial expressions. In this chapter the application of EPR to two important geotechnical and geo-environmental engineering systems is presented. These systems include thermo-mechanical behaviour of unsaturated soils and optimisation of performance of an aquifer system subjected to seawater intrusion. Comparisons are made between the EPR model predictions and the actual measured or synthetic data. The results show that the proposed methodology is able to develop highly accurate models with excellent capability of reflecting the real and expected physical effects of the contributing parameters on the performance of the systems. Merits and advantages of the suggested methodology are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahangar-Asr A, Javadi AA, Johari A, Chen Y (2014) Lateral load bearing capacity modelling of piles in cohesive soils in undrained conditions: An intelligent evolutionary approach. Applied Soft Computing 24 (0):822–828. doi:http://dx.doi.org/10.1016/j.asoc.2014.07.027

  • Ahangar-Asr A, Johari A, Javadi AA (2012) An evolutionary approach to modelling the soil–water characteristic curve in unsaturated soils. Computers & Geosciences 43 (0):25–33. doi:http://dx.doi.org/10.1016/j.cageo.2012.02.021

  • Alavi A, Gandomi A (2013) Hybridizing Genetic Programming with Orthogonal Least Squares for Modeling of Soil Liquefaction. International Journal of Earthquake Engineering and Hazard Mitigation 1 (1):2–8

    MathSciNet  Google Scholar 

  • Alavi A, Gandomi A, Mollahasani A (2012) A Genetic Programming-Based Approach for the Performance Characteristics Assessment of Stabilized Soil. In: Chiong R, Weise T, Michalewicz Z (eds) Variants of Evolutionary Algorithms for Real-World Applications. Springer Berlin Heidelberg, pp 343–376. doi:10.1007/978-3-642-23424-8_11

    Google Scholar 

  • Alavi A, Gandomi A, Nejad H, Mollahasani A, Rashed A (2013) Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Comput & Applic 23 (6):1771–1786. doi:10.1007/s00521-012-1144-6

    Article  Google Scholar 

  • Alavi A, Gandomi A, Sahab M, Gandomi M (2010) Multi expression programming: a new approach to formulation of soil classification. Engineering with Computers 26 (2):111–118. doi:10.1007/s00366-009-0140-7

    Article  Google Scholar 

  • Alavi AH, Gandomi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations 28 (3):242–274. doi:10.1108/02644401111118132

    Article  MATH  Google Scholar 

  • Alavi AH, Gandomi AH, Gandomi M, Sadat Hosseini SS (2009) Prediction of maximum dry density and optimum moisture content of stabilised soil using RBF neural networks. The IES Journal Part A: Civil & Structural Engineering 2 (2):98–106. doi:10.1080/19373260802659226

    Google Scholar 

  • Alavi AH, Gandomi AH, Mollahasani A, Bazaz JB (2013) Linear and Tree-Based Genetic Programming for Solving Geotechnical Engineering Problems. In: Alavi X-SYHGTH (ed) Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier, Oxford, pp 289–310. doi:http://dx.doi.org/10.1016/B978-0-12-398296-4.00012-X

  • Babovic V, Keijzer M (2006) Rainfall-Runoff Modeling Based on Genetic Programming. In: Encyclopedia of Hydrological Sciences. John Wiley & Sons, Ltd. doi:10.1002/0470848944.hsa017

    Book  Google Scholar 

  • Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Systems with Applications 35 (1–2): 111–123. doi:http://dx.doi.org/10.1016/j.eswa.2007.06.006

  • Bhattacharjya RK, Datta B (2009) ANN-GA-based model for multiple objective management of coastal aquifers. J Water Resour Plann Manage 135 (5):314–322

    Article  Google Scholar 

  • Bhattacharjya RK, Datta B, Satish MG (2007) Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers. J Hydrol Eng 12 (3):273–282

    Article  Google Scholar 

  • Bruington AE (1972) Saltwater intrusion into aquifers1. JAWRA Journal of the American Water Resources Association 8 (1):150–160. doi:10.1111/j.1752-1688.1972.tb05104.x

    Article  Google Scholar 

  • Das A, Datta B (1999) Development of management models for sustainable use of coastal aquifers. J Irrig Drain Eng 125 (3):112–121

    Article  Google Scholar 

  • Davidson J, Savic DA, Walters GA (1999) Method for Identification of explicit polynomial formulae for the friction in turbulent pipe flow. Journal of Hydroinformatics 2 (1):115–126

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6 (2):182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • Dhar A, Datta B (2009) Saltwater intrusion management of coastal aquifers. I: Linked simulation-optimization. J Hydrol Eng 14 (12):1263–1272

    Article  Google Scholar 

  • Dorado J, RabuñAl JR, Pazos A, Rivero D, Santos A, Puertas J (2003) Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ann and gp. Applied Artificial Intelligence 17 (4):329–343. doi:10.1080/713827142

    Article  Google Scholar 

  • Dumont M, Taibi S, Fleureau J, Abou Bekr N, Saouab A (2010) Modelling the effect of temperature on unsaturated soil behaviour. Comptes Rendus Geoscience 342:892–900

    Article  Google Scholar 

  • Faramarzi A, Javadi AA, Ahangar-Asr A (2013) Numerical implementation of EPR-based material models in finite element analysis. Computers & Structures 118 (0):100–108. doi:10.1016/j.compstruc.2012.10.002

  • Gandomi A, Alavi A (2012) A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Comput & Applic 21 (1):189–201. doi:10.1007/s00521-011-0735-y

    Article  Google Scholar 

  • Gandomi A, Alavi A (2012) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput & Applic 21 (1):171–187. doi:10.1007/s00521-011-0734-z

    Article  Google Scholar 

  • Gandomi A, Alavi A, Arjmandi P, Aghaeifar A, Seyednour R (2010) Genetic Programming and Orthogonal Least Squares: A Hybrid Approach to Modeling the Compressive Strength of CFRP-Confined Concrete Cylinders. Journal of Mechanics of Materials and Structures 5 (5):735–753. doi:10.2140/jomms.2010.5.735

    Article  Google Scholar 

  • Gandomi A, Alavi A, Sahab M (2010) New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming. Mater Struct 43 (7):963–983. doi:10.1617/s11527-009-9559-y

    Article  Google Scholar 

  • Gandomi A, Alavi A, Yun G (2011) Formulation of uplift capacity of suction caissons using multi expression programming. KSCE J Civ Eng 15 (2):363–373. doi:10.1007/s12205-011-1117-9

    Article  Google Scholar 

  • Gandomi A, Yun G, Alavi A (2013) An evolutionary approach for modeling of shear strength of RC deep beams. Mater Struct 46 (12):2109–2119. doi:10.1617/s11527-013-0039-z

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2013) Expression Programming Techniques for Formulation of Structural Engineering Systems. In: Alavi AHG-SYTH (ed) Metaheuristic Applications in Structures and Infrastructures. Elsevier, Oxford, pp 439–455. doi:http://dx.doi.org/10.1016/B978-0-12-398364-0.00018-8

  • Gandomi AH, Alavi AH, Mousavi M, Tabatabaei SM (2011) A hybrid computational approach to derive new ground-motion prediction equations. Engineering Applications of Artificial Intelligence 24 (4):717–732. doi:http://dx.doi.org/10.1016/j.engappai.2011.01.005

  • Gandomi AH, Alavi, A. H., Kazemi, S., Alinia, M. M. (2009) Behavior appraisal of steel semi-rigid joints using Linear Genetic Programming. Journal of Constructional Steel Research 65 (8–9):1738–1750. doi:http://dx.doi.org/10.1016/j.jcsr.2009.04.010

  • Gandomi AH, Yun GJ (2014) Coupled SelfSim and genetic programming for non-linear material constitutive modelling. Inverse Problems in Science and Engineering: 1–19. doi:10.1080/17415977.2014.968149

  • Gaur S, Deo MC (2008) Real-time wave forecasting using genetic programming. Ocean Engineering 35 (11–12):1166–1172. doi:http://dx.doi.org/10.1016/j.oceaneng.2008.04.007

  • Giustolisi O, Savic DA (2006) A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics 8 (3):207–222. doi:10.2166/hydro.2006.020

    Google Scholar 

  • Habibagahi G, Bamdad A (2003) A neural network framework for mechanical behavior of unsaturated soils. Canadian Geotechnical Journal 40 (3):684–693. doi:10.1139/t03-004

    Article  Google Scholar 

  • Javadi AA, Abd-Elhamid HF, Farmani R (2012) A simulation-optimization model to control seawater intrusion in coastal aquifers using abstraction/recharge wells. International Journal for Numerical and Analytical Methods in Geomechanics 36 (16):1757–1779. doi:10.1002/nag.1068

    Article  Google Scholar 

  • Javadi AA, Ahangar-Asr A, Johari A, Faramarzi A, Toll D (2012) Modelling stress–strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Engineering Applications of Artificial Intelligence 25 (5):926–933. doi:http://dx.doi.org/10.1016/j.engappai.2012.03.006

  • Johari A, Habibagahi G, Ghahramani A (2006) Prediction of Soil–Water Characteristic Curve Using Genetic Programming. Journal of Geotechnical and Geoenvironmental Engineering 132 (5):661–665. doi:10.1061/(ASCE)1090-0241(2006)132:5(661)

    Article  Google Scholar 

  • Khalili N, Loret B (2001) An Elasto-plastic Model for Non-isothermal Analysis of Flow and Deformation in Unsaturated Porous Media: Formulation. International Journal of Solid and Structures 38:8305–8330

    Article  MATH  Google Scholar 

  • Kourakos G, Mantoglou A (2009) Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Adv Water Resour 32 (4):507–521

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press

    MATH  Google Scholar 

  • Loret B, Khalili N (2000) A Three Phase Model for Unsaturated Soils. International Journal for Numerical and Analytical Methods in Geomechanics 24:893–927

    Article  MATH  Google Scholar 

  • Makkeasorn A, Chang NB, Zhou X (2008) Short-term streamflow forecasting with global climate change implications – A comparative study between genetic programming and neural network models. Journal of Hydrology 352 (3–4):336–354. doi:http://dx.doi.org/10.1016/j.jhydrol.2008.01.023

  • Mousavi S, Alavi A, Gandomi A, Mollahasani ALI (2011) Nonlinear genetic-based simulation of soil shear strength parameters. J Earth Syst Sci 120 (6):1001–1022. doi:10.1007/s12040-011-0119-9

    Article  Google Scholar 

  • Narendra BS, Sivapullaiah PV, Suresh S, Omkar SN (2006) Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study. Computers and Geotechnics 33 (3):196–208. doi:http://dx.doi.org/10.1016/j.compgeo.2006.03.006

  • Parasuraman K, Elshorbagy A (2008) Toward improving the reliability of hydrologic prediction: Model structure uncertainty and its quantification using ensemble-based genetic programming framework. Water Resources Research 44 (12):W12406. doi:10.1029/2007WR006451

    Article  Google Scholar 

  • Patel AS, Shah DL (2008) Water management: Conservation, harvesting and artificial recharge. New age international (p) limited, publishers,

    Google Scholar 

  • Pool M, Carrera J (2010) Dynamics of negative hydraulic barriers to prevent seawater intrusion. Hydrogeol J 18 (1):95–105. doi:10.1007/s10040-009-0516-1

    Article  Google Scholar 

  • Rezania M, Javadi AA (2007) A new genetic programming model for predicting settlement of shallow foundations. Canadian Geotechnical Journal 44 (12):1462–1473. doi:10.1139/T07-063

    Article  Google Scholar 

  • Sreekanth J, Datta B (2010) Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J Hydrol 393 (3):245–256

    Article  Google Scholar 

  • Sreekanth J, Datta B (2011) Comparative Evaluation of Genetic Programming and Neural Network as Potential Surrogate Models for Coastal Aquifer Management. Water Resour Manage 25 (13):3201–3218. doi:10.1007/s11269-011-9852-8

    Article  Google Scholar 

  • Sreekanth J, Datta B (2011) Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization. Water Resources Research 47 (4):W04516. doi:10.1029/2010WR009683

    Article  Google Scholar 

  • Todd DK (1974) Salt-Water Intrusion and Its Control. Journal (American Water Works Association) 66 (3):180–187. doi:10.2307/41266996

    Google Scholar 

  • Uchaipichat A (2005) Experimental Investigation and Constitutive Modelling of Thermo-hydro-mechanical Coupling in Unsaturated Soils. The University of New South Wales, Sydney, New South Wales, Australia

    Google Scholar 

  • Uchaipichat A, Khalili N (2009) Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt. Geotechnique 59 (4):339–353

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44 (5):892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Voss CI (1984) A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. U.S. Geol. Surv. (USGS), Water Resour. Invest.

    Google Scholar 

  • Wang W-C, Chau K-W, Cheng C-T, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 374 (3–4):294–306. doi:http://dx.doi.org/10.1016/j.jhydrol.2009.06.019

  • Wu W, Li X, Charlier R, Collin F (2004) A thermo-hydro-mechanical constitutive model and its numerical modelling for unsaturated soils. Computers and Geotechnics 31 (2):155–167. doi:http://dx.doi.org/10.1016/j.compgeo.2004.02.004

  • Yang C, Tham L, Feng X, Wang Y, Lee P (2004) Two-Stepped Evolutionary Algorithm and Its Application to Stability Analysis of Slopes. Journal of Computing in Civil Engineering 18 (2):145–153. doi:10.1061/(ASCE)0887-3801(2004)18:2(145)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar A. Javadi .

Editor information

Editors and Affiliations

19.1 Electronic Supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hussain, M.S., Ahangar-asr, A., Chen, Y., Javadi, A.A. (2015). A New Evolutionary Approach to Geotechnical and Geo-Environmental Modelling. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics