Skip to main content

An Online Adaptive Fuzzy Clustering and Its Application for Background Suppression

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9163))

Included in the following conference series:

  • 1846 Accesses

Abstract

Background suppression in video sequences has attracted growing attention and is one of the heated issues in almost every task of video processing. An online fuzzy clustering for automatic background suppression is presented in this paper. First, in the classical fuzzy clustering methods, we have to wait until all data have been generated before the learning process begins. It is impractical because in real application for background suppression, the video length is unknown and the video frames are generated dynamically in a streaming environment and arrive one at a time. Our method has an ability to adapt and change through complex scenes in a true online fashion. Secondly, different from previous works for background suppression, where the information of the detected background is ignored, we propose a new way to incorporate this information. Finally, to estimate the model parameters, the scoring method is adopted to minimize the fuzzy objective function with the Kullback-Leibler divergence information. Experiments on real datasets are presented. The performance of the proposed model is compared to that of other background modeling techniques, demonstrating the robustness and accuracy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)

    Google Scholar 

  2. Vargas, M., Milla, J., Toral, S., Barrero, F.: An enhanced background estimation algorithm for vehicle detection in urban traffic scenes. IEEE Trans. Veh. Technol. 59(8), 3694–3709 (2010)

    Article  Google Scholar 

  3. Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 319–336 (2009)

    Article  Google Scholar 

  4. Mukherjee, D., Wu, Q.M.J., Thanh, M.N.: Gaussian mixture model with advanced distance measure based on support weights and histogram of gradients for background suppression. IEEE Trans. Industr. Inf. 10(2), 1086–1096 (2014)

    Article  Google Scholar 

  5. Han, B., Comaniciu, D., Davis, L.: Sequential kernel density approximation and its application to real-time visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1186–1197 (2008)

    Article  Google Scholar 

  6. Vargas, M., Milla, J., Toral, S., Barrero, F.: An enhanced background estimation algorithm for vehicle detection in urban traffic scenes. IEEE Trans. Veh. Technol. 59(8), 3694–3709 (2010)

    Article  Google Scholar 

  7. Thanh, M.N., Wu, Q.M.J.: A nonsymmetric mixture model for unsupervised image segmentation. IEEE Trans. Cybern. 43(2), 751–765 (2013)

    Article  Google Scholar 

  8. Greenspan, H., Goldberger, J., Mayer, A.: Probabilistic space-time video modeling via piecewise GMM. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 384–396 (2004)

    Article  Google Scholar 

  9. Lee, D.S.: Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)

    Article  Google Scholar 

  10. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: IEEE International Conference on Pattern Recognition, vol. 2, pp. 28–31 (2004)

    Google Scholar 

  11. Wang, Y., Loe, K.F., Wu, J.K.: A dynamic conditional random field model for foreground and shadow segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 279–289 (2006)

    Article  Google Scholar 

  12. Chen, Z., Ellis, T.: Self-adaptive Gaussian mixture model for urban traffic monitoring system. In: IEEE International Conference on Computer Vision Workshops, pp. 1769–1776 (2011)

    Google Scholar 

  13. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York (1981)

    Book  MATH  Google Scholar 

  14. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River (1988)

    MATH  Google Scholar 

  15. Miyamoto, S., Mukaidono, M.: Fuzzy c-means as a regularization and maximum entropy approach. In: International Fuzzy Systems Association World Congress, pp. 86–92 (1997)

    Google Scholar 

  16. Ichihashi, H., Miyagishi, K., Honda, K.: Fuzzy c-means clustering with regularization by K-L information. In: IEEE International Conference on Fuzzy Systems, pp. 924–927 (2001)

    Google Scholar 

  17. Chatzis, S.P., Varvarigou, T.A.: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 16(5), 1351–1361 (2008)

    Article  Google Scholar 

  18. Thanh, M.N., Wu, Q.M.J.: Dynamic fuzzy clustering and its application in motion segmentation. IEEE Trans. Fuzzy Syst. 21(6), 1019–1031 (2013)

    Article  Google Scholar 

  19. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  20. Titterington, D.M.: Recursive parameter estimation using incomplete data. J. Roy. Stat. Soc. B 46(2), 257–267 (1984)

    MATH  MathSciNet  Google Scholar 

  21. Titterington, D.M., Smith, A.F.M., Makov, U.E.: tatistical Analysis of Finite Mixture Distributions. Wiley, New York (1985)

    Google Scholar 

  22. Allou, S., Christophe, A., Gerard, G.: An online classification EM algorithm based on the mixture model. Stat. Comput. 17(3), 209–218 (2007)

    Article  MathSciNet  Google Scholar 

  23. Yao, J.F.: On recursive estimation in incomplete data models. Statistics 34(1), 27–51 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been supported in part by the Canada Research Chair Program and the NSERC Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Minh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, T.M., Wu, Q.M.J., Mukherjee, D. (2015). An Online Adaptive Fuzzy Clustering and Its Application for Background Suppression. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20904-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20903-6

  • Online ISBN: 978-3-319-20904-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics