Abstract
In this paper we propose a new set of bio-inspired descriptors for image classification based on low-level processing performed by the retina. Taking as a starting point a descriptor called FREAK (Fast Retina Keypoint), we further extend it mimicking the center-surround organization of ganglion receptive fields. To test our approach we compared the performance of the original FREAK and our proposal on the 15 scene categories database. The results show that our approach outperforms the original FREAK for the scene classification task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)
Bradski, G.: The opencv library. Dr. Dobb’s J. Softw. Tools 25, 120–126 (2000)
Chichilnisky, E.J.: A simple white noise analysis of neuronal light responses. Netw.: Comput. Neural Syst. 12(2), 199–213 (2001)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE Computer Society (2006)
Leutenegger, S., Chli, M., Siegwart, R.: Brisk: binary robust invariant scalable keypoints. In: ICCV 2011, pp. 2548–2555 (2011)
Meng, X., Wang, Z., Wu, L.: Building global image features for scene recognition. Pattern Recogn. 45(1), 373–380 (2012)
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)
Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155, 23–36 (2006)
Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–420 (2009)
Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)
Tuytelaars, T.: Dense interest points. In: The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, pp. 2281–2288, San Francisco, CA, USA, 13–18 June 2010 (2010)
Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008). http://www.vlfeat.org/
Vu, N.-S., Nguyen, T.P., Garcia, C.: Improving texture categorization with biologically inspired filtering. Image Vis. Comput. 32, 424–436 (2013)
Wang, J., Wang, X., Yang, X., Zhao, A.: CS-FREAK: an improved binary descriptor. In: Tan, T., Ruan, Q., Wang, S., Ma, H., Huang, K. (eds.) IGTA 2014. CCIS, vol. 437, pp. 129–136. Springer, Heidelberg (2014)
Whiten, C., Laganiere, R., Bilodeau, G.A.: Efficient action recognition with MoFREAK. In: Proceedings of the 2013 International Conference on Computer and Robot Vision, pp. 319–325. IEEE Computer Society (2013)
Wohrer, A.: Model and large-scale simulator of a biological retina with contrast gain control. Ph.D. thesis, University of Nice Sophia-Antipolis (2008)
Wu, J., Rehg, J.M.: Centrist: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)
Acknowledgement
We thank M. San Biagio for his support in the image classification algorithm. This research received financial support from the 7th Framework Programme for Research of the European Commission, under Grant agreement num 600847: RENVISION project of the Future and Emerging Technologies (FET) programme Neuro-bio-inspired systems (NBIS) FET-Proactive Initiative.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hilario Gomez, C., Medathati, K., Kornprobst, P., Murino, V., Sona, D. (2015). Improving FREAK Descriptor for Image Classification. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-20904-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20903-6
Online ISBN: 978-3-319-20904-3
eBook Packages: Computer ScienceComputer Science (R0)