Abstract
Estimating the pose of objects from range data is a problem of considerable practical importance for many vision applications. This paper presents an approach for accurate and efficient 3D pose estimation from 2.5D range images. Initialized with an approximate pose estimate, the proposed approach refines it so that it accurately accounts for an acquired range image. This is achieved by using a hypothesize-and-test scheme that combines Particle Swarm Optimization (PSO) and graphics-based rendering to minimize a cost function of object pose that quantifies the misalignment between the acquired and a hypothesized, rendered range image. Extensive experimental results demonstrate the superior performance of the approach compared to the Iterative Closest Point (ICP) algorithm that is commonly used for pose refinement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Besl, P., McKay, N.: A method for registration of 3-D shapes. PAMI 14(2), 239–256 (1992)
Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. Comput. Graph. Forum 32(5), 113–123 (2013)
Cao, T.-T., Tang, K., Mohamed, A., Tan, T.-S.: Parallel banding algorithm to compute exact distance transform with the GPU. In: I3D, pp. 83–90 (2010)
Choi, C., Christensen, H.: 3D pose estimation of daily objects using an RGB-D camera. In: IROS, pp. 3342–3349 (2012)
Collet, A., Martinez, M., Srinivasa, S.: The MOPED framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(10), 1284–1306 (2011)
Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: CVPR, pp. 998–1005, June 2010
Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Theory Comput. 8(19), 415–428 (2012)
Fischer, J., Bormann, R., Arbeiter, G., Verl, A.: A feature descriptor for texture-less object representation using 2D and 3D cues from RGB-D data. In: ICRA, pp. 2112–2117 (2013)
Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)
Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013)
Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Optical Soc. Am. A 4(4), 629–642 (1987)
Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. PAMI 21(5), 433–449 (1999)
Khoshelham, K., Elberink, S.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)
Lourakis, M., Zabulis, X.: Model-based pose estimation for rigid objects. In: Chen, M., Leibe, B., Neumann, B. (eds.) ICVS 2013. LNCS, vol. 7963, pp. 83–92. Springer, Heidelberg (2013)
Mian, A., Bennamoun, M., Owens, R.: Automatic correspondence for 3D modeling: an extensive review. Int. J. Shape Model. 11(02), 253–291 (2005)
Park, I., Germann, M., Breitenstein, M., Pfister, H.: Fast and automatic object pose estimation for range images on the GPU. Mach. Vis. Appl. 21(5), 749–766 (2010)
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3DIM, pp. 145–152 (2001)
Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA, pp. 3212–3217 (2009)
Sobol, I.: Distribution of points in a cube and approximate evaluation of integrals. U.S.S.R. Comput. Maths. Math. Phys. 7, 86–112 (1967)
Sun, M., Bradski, G., Xu, B.-X., Savarese, S.: Depth-encoded hough voting for joint object detection and shape recovery. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 658–671. Springer, Heidelberg (2010)
Tejani, A., Tang, D., Kouskouridas, R., Kim, T.-K.: Latent-class hough forests for 3D object detection and pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 462–477. Springer, Heidelberg (2014)
Tombari, F., Salti, S., di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. In: ICIP, pp. 809–812 (2011)
Wang, W., Chen, L., Liu, Z., Khnlenz, K., Burschka, D.: Textured/textureless object recognition and pose estimation using RGB-D image. J. Real-Time Image Process. 1–16 (2013)
Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm optimization for visual tracking. In: CVPR, pp. 1–8 (2008)
Acknowledgements
This work has received funding from the EC FP7 programme under grant no. 270138 DARWIN and by FORTH-ICS internal RTD Programme “Ambient Intelligence and Smart Environments”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zabulis, X., Lourakis, M., Koutlemanis, P. (2015). 3D Object Pose Refinement in Range Images. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-20904-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20903-6
Online ISBN: 978-3-319-20904-3
eBook Packages: Computer ScienceComputer Science (R0)