Abstract
In this paper we present an in-depth evaluation of a recently published tracking algorithm [6] which intelligently couples rigid-registration and color-based segmentation using level-sets. The original method did not arouse the deserved interest in the community, most likely due to challenges in reimplementation and the lack of a quantitative evaluation. Therefore, we reimplemented this baseline approach, evaluated it on state-of-the-art datasets (VOT and OOT) and compared it to alternative segmentation-based tracking algorithms. We believe this is a valuable contribution as such a comparison is missing in the literature. The impressive results help promoting segmentation-based tracking algorithms, which are currently under-represented in the visual tracking benchmarks. Furthermore, we present various extensions to the color model, which improve the performance in challenging situations such as confusions between fore- and background. Last, but not least, we discuss implementation details to speed up the computation by using only a sparse set of pixels for the propagation of the contour, which results in tracking speed of up to 200 Hz for typical object sizes using a single core of a standard 2.3 GHz CPU.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Sequences were kindly provided by Esther Horbert from the Computer Vision Group, RWTH Aachen University.
- 2.
- 3.
No official publication available. Only a brief abstract in [19].
References
Aeschliman, C., Park, J., Kak, A.: A probabilistic framework for joint segmentation and tracking. In: CVPR (2010)
Avidan, S.: Ensemble tracking. PAMI 29, 261–271 (2007)
Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval. ACM press, New York (1999)
Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. IJCV 56, 221–255 (2004)
Belagiannis, V., Schubert, F., Navab, N., Ilic, S.: Segmentation based particle filtering for real-time 2D object tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 842–855. Springer, Heidelberg (2012)
Bibby, C., Reid, I.: Robust real-time visual tracking using pixel-wise posteriors. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 831–844. Springer, Heidelberg (2008)
Chen, D., Yuan, Z., Hua, G., Wu, Y., Zheng, N.: Description-discrimination collaborative tracking. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 345–360. Springer, Heidelberg (2014)
Chockalingam, P., Pradeep, N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: ICCV (2009)
Dinh, T., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: CVPR (2011)
Duffner, S., Garcia, C.: Pixeltrack: a fast adaptive algorithm for tracking non-rigid objects. In: ICCV (2013)
Felsberg, M.: Enhanced distribution field tracking using channel representations. In: ICCVW (2013)
Godec, M., Roth, P., Bischof, H.: Hough-based tracking of non-rigid objects. In: ICCV (2011)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: ICCV (2011)
He, S., Yang, Q., Lau, R., Wang, J., Yang, M.H.: Visual tracking via locality sensitive histograms. In: CVPR (2013)
Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects using progressively improving detectors. In: CVPR (2005)
Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR (2012)
Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: bootstrapping binary classifiers by structural constraints. In: CVPR (2010)
Kristan, M. et al.: The visual object tracking vot2013 challenge results. In: ICCVW (2013)
Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Čehovin, L., Nebehay, G., Vojíř, T., Fernández, G., et al.: The visual object tracking VOT2014 challenge results. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014 Workshops. LNCS, vol. 8926, pp. 191–217. Springer, Heidelberg (2015)
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. TIST 4, 1–58 (2013)
Mitzel, D., Horbert, E., Ess, A., Leibe, B.: Multi-person tracking with sparse detection and continuous segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 397–410. Springer, Heidelberg (2010)
Papoutsakis, K., Argyros, A.: Integrating tracking with fine object segmentation. Image Vis. Comput. 31, 771–785 (2013)
Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. PAMI 22, 266–280 (2000)
Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label mrf optimization. In: BMVC (2010)
Unger, M., Mauthner, T., Pock, T., Bischof, H.: Tracking as segmentation of spatial-temporal volumes by anisotropic weighted TV. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 193–206. Springer, Heidelberg (2009)
Vojíř, T., Matas, J.: Robustifying the flock of trackers. In: CVWW (2011)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. Acm Comput. Surv. (CSUR) 38, 1–45 (2006)
Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: CVPR (2012)
Acknowledgments
We thank Esther Horbert (Computer Vision Group RWTH Aachen University) for providing four evaluation sequences and valuable feedback for resolving open questions on the hidden details of [6].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Schubert, F., Casaburo, D., Dickmanns, D., Belagiannis, V. (2015). Revisiting Robust Visual Tracking Using Pixel-Wise Posteriors. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-20904-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20903-6
Online ISBN: 978-3-319-20904-3
eBook Packages: Computer ScienceComputer Science (R0)