Abstract
We present a new method for generating general object candidates for cluttered RGB-D scenes. Starting from an over-segmentation of the image, we build a graph representation and define an object candidate as a subgraph that has maximal internal similarity as well as minimal external similarity. These candidates are created by successively adding segments to a seed segment in a saliency-guided way. Finally, the resulting object candidates are ranked based on Gestalt principles. We show that the proposed algorithm clearly outperforms three other recent methods for object discovery on the challenging Kitchen dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of the CVPR (2009)
Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. Trans. on PAMI 34(11), 2198–2202 (2012)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. of Comput. Vis. 88(2), 303–338 (2010)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int J. of Comput. Vis. 59(2), 167–181 (2004)
Frintrop, S., Martín García, G., Cremers, A.B.: A cognitive approach for object discovery. In: Proceedings of ICPR (2014)
Frintrop, S.: 6 sensor fusion. In: Frintrop, S. (ed.) VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899, pp. 129–147. Springer, Heidelberg (2006)
Frintrop, S., Werner, T., Martín García, G.: Traditional saliency reloaded: a good old model in new shape. In: Proceedings of CVPR (2015)
Horbert, E., Martín García, G., Frintrop, S., Leibe, B.: Sequence level object candidates based on saliency for generic object recognition on mobile systems. In: Proceedings of ICRA (2015). Dataset: http://www.mmp.rwth-aachen.de/projects/kod/
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. Trans. on PAMI 20(11), 1254–1259 (1998)
Kanizsa, G., Gerbino, W.: Convexity and Symmetry in Figure-Ground Organization. Vision and artifact, New York (1976)
Karpathy, A., Miller, S.: Object discovery in 3D scenes via shape analysis. In: Proceedings of ICRA (2013)
Klein, D.A., Frintrop, S.: Salient pattern detection using \(W_2\) on multivariate normal distributions. In: Proceedings of DAGM-OAGM (2012)
Kootstra, G., Kragic, D.: Fast and bottom-up object detection, segmentation, and evaluation using Gestalt principles. In: Proceedings of ICRA (2011)
Manén, S., Guillaumin, M.: Prime object proposals with randomized prim’s algorithm. In: Proceedings of ICCV (2013)
Pashler, H.: The Psychology of Attention. MIT Press, Cambridge (1997)
Richtsfeld, A., Zillich, M., Vincze, M.: Implementation of Gestalt principles for object segmentation. In: Proceedings of ICPR (2012)
Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M., Singh, M., von der Heydt, R.: A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol. Bull. 138(6), 1172–1217 (2012)
Werner, T.: Saliency-driven object dicovery based on gestalt principles. Master thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Werner, T., Martín-García, G., Frintrop, S. (2015). Saliency-Guided Object Candidates Based on Gestalt Principles. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-20904-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20903-6
Online ISBN: 978-3-319-20904-3
eBook Packages: Computer ScienceComputer Science (R0)