Abstract
Sensitivity to scene such as contrast and illumination intensity, is one of the factors significantly affecting the performance of object trackers. In order to overcome this issue, tracker parameters need to be adapted based on changes in contextual information. In this paper, we propose an intelligent mechanism to adapt the tracker parameters, in a real-time and online fashion. When a frame is processed by the tracker, a controller extracts the contextual information, based on which it adapts the tracker parameters for successive frames. The proposed controller relies on a learned neuro-fuzzy inference system to find satisfactory tracker parameter values. The proposed approach is trained on nine publicly available benchmark video data sets and tested on three unrelated video data sets. The performance comparison indicates clear tracking performance improvement in comparison to tracker with static parameter values, as well as other state-of-the art trackers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Izadinia, H., Saleemi, I., Li, W., Shah, M.: (MP)\(^2\)T: multiple people multiple parts tracker. In: ECCV (2012)
Zamir, A.R., Dehghan, A., Shah, M.: GMCP-tracker: global multi-object tracking using generalized minimum clique graphs. In: ECCV (2012)
Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by online learned discriminative appearance models. In: CVPR (2010)
Chau, D.P., Bremond, F., Thonnat, M.: A multi-feature tracking algorithm enabling adaptation to context variations. In: ICDP (2011)
Hall, D.: Automatic parameter regulation of perceptual system. J. Image Vis. Comput. 24, 870–881 (2006)
Yoon, J.H., Kim, D.Y., Yoon, K.J.: Visual tracking via adaptive tracker selection with multiple features. In: ECCV (2012)
Chau, D.P., Badie, J., Bremond, F., Thonnat, M.: Online tracking parameter adaptation based on evaluation. In: AVSS (2013)
Drucker, H., Durges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)
Subramanian, K., Suresh, S.: A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. J. Appl. Soft Comput. 12, 3603–3614 (2012)
Souded, M., Giulieri, L., Bremond, F.: An Object tracking in particle filtering and data association framework, using SIFT features. In: ICDP (2011)
Psaltis, D., Sideris, A., Yamamura, A.: A multilayered neural network controller. IEEE Control Syst. Mag. 8, 17–21 (1988)
Shitrit, J., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under global appearance constraints. In: ICCV (2011)
Kuo, C., Nevatia, R.: How does person identity recognition help multi-person tracking? In: CVPR (2011)
Kasturi, R., Soundararajan, P., Garofolo, J., Bowers, R., Korzhova, V.: How does person identity recognition help multi-person tracking? In: CVPR (2011)
Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 33, 1806–1819 (2011)
Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: CVPR (2011)
Chen, S., Fern, A., Todorovic, S.: Multi-object tracking via constrained sequential labeling. In: CVPR (2014)
Acknowledgments
This work is supported by The Panorama and Centaur European projects as well as The Movement French project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chau, D.P., Subramanian, K., Brémond, F. (2015). Adaptive Neuro-Fuzzy Controller for Multi-object Tracker. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-20904-3_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20903-6
Online ISBN: 978-3-319-20904-3
eBook Packages: Computer ScienceComputer Science (R0)