Skip to main content

Adaptive Neuro-Fuzzy Controller for Multi-object Tracker

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9163))

Included in the following conference series:

  • 1841 Accesses

Abstract

Sensitivity to scene such as contrast and illumination intensity, is one of the factors significantly affecting the performance of object trackers. In order to overcome this issue, tracker parameters need to be adapted based on changes in contextual information. In this paper, we propose an intelligent mechanism to adapt the tracker parameters, in a real-time and online fashion. When a frame is processed by the tracker, a controller extracts the contextual information, based on which it adapts the tracker parameters for successive frames. The proposed controller relies on a learned neuro-fuzzy inference system to find satisfactory tracker parameter values. The proposed approach is trained on nine publicly available benchmark video data sets and tested on three unrelated video data sets. The performance comparison indicates clear tracking performance improvement in comparison to tracker with static parameter values, as well as other state-of-the art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

  2. 2.

    www-sop.inria.fr/orion/ETISEO.

References

  1. Izadinia, H., Saleemi, I., Li, W., Shah, M.: (MP)\(^2\)T: multiple people multiple parts tracker. In: ECCV (2012)

    Google Scholar 

  2. Zamir, A.R., Dehghan, A., Shah, M.: GMCP-tracker: global multi-object tracking using generalized minimum clique graphs. In: ECCV (2012)

    Google Scholar 

  3. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by online learned discriminative appearance models. In: CVPR (2010)

    Google Scholar 

  4. Chau, D.P., Bremond, F., Thonnat, M.: A multi-feature tracking algorithm enabling adaptation to context variations. In: ICDP (2011)

    Google Scholar 

  5. Hall, D.: Automatic parameter regulation of perceptual system. J. Image Vis. Comput. 24, 870–881 (2006)

    Article  Google Scholar 

  6. Yoon, J.H., Kim, D.Y., Yoon, K.J.: Visual tracking via adaptive tracker selection with multiple features. In: ECCV (2012)

    Google Scholar 

  7. Chau, D.P., Badie, J., Bremond, F., Thonnat, M.: Online tracking parameter adaptation based on evaluation. In: AVSS (2013)

    Google Scholar 

  8. Drucker, H., Durges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)

    Google Scholar 

  9. Subramanian, K., Suresh, S.: A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. J. Appl. Soft Comput. 12, 3603–3614 (2012)

    Article  Google Scholar 

  10. Souded, M., Giulieri, L., Bremond, F.: An Object tracking in particle filtering and data association framework, using SIFT features. In: ICDP (2011)

    Google Scholar 

  11. Psaltis, D., Sideris, A., Yamamura, A.: A multilayered neural network controller. IEEE Control Syst. Mag. 8, 17–21 (1988)

    Article  Google Scholar 

  12. Shitrit, J., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under global appearance constraints. In: ICCV (2011)

    Google Scholar 

  13. Kuo, C., Nevatia, R.: How does person identity recognition help multi-person tracking? In: CVPR (2011)

    Google Scholar 

  14. Kasturi, R., Soundararajan, P., Garofolo, J., Bowers, R., Korzhova, V.: How does person identity recognition help multi-person tracking? In: CVPR (2011)

    Google Scholar 

  15. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 33, 1806–1819 (2011)

    Article  Google Scholar 

  16. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: CVPR (2011)

    Google Scholar 

  17. Chen, S., Fern, A., Todorovic, S.: Multi-object tracking via constrained sequential labeling. In: CVPR (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported by The Panorama and Centaur European projects as well as The Movement French project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Phu Chau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chau, D.P., Subramanian, K., Brémond, F. (2015). Adaptive Neuro-Fuzzy Controller for Multi-object Tracker. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20904-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20903-6

  • Online ISBN: 978-3-319-20904-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics