Abstract
Clinical evidence suggests that sleep pose analysis can shed light onto patient recovery rates and responses to therapies. In this work, we introduce a formulation that combines features from multimodal data to classify human sleep poses in an Intensive Care Unit (ICU) environment. As opposed to the current methods that combine data from multiple sensors to generate a single feature, we extract features independently. We then use these features to estimate candidate labels and infer a pose. Our method uses modality trusts – each modality’s classification ability – to handle variable scene conditions and to deal with sensor malfunctions. Specifically, we exploit shape and appearance features extracted from three sensor modalities: RGB, depth, and pressure. Classification results indicate that our method achieves 100 % accuracy (outperforming previous techniques by 6 %) in bright and clear (ideal) scenes, 70 % in poorly illuminated scenes, and 90 % in occluded ones.
This project is supported in part by the Institute for Collaborative Biotechnologies (ICB) through grant W911NF-09-0001 from the U.S. Army Research Office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23(2), 255–281 (2012)
Bihari, S., McEvoy, R.D., Matheson, E., Kim, S., Woodman, R.J., Bersten, A.D.: Factors affecting sleep quality of patients in intensive care unit. J. Clin. Sleep Med.: Off. Publ. Am. Acad. Sleep Med. 8(3), 301 (2012)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005)
Gordon, S.J., Grimmer, K.A., Trott, P.: Understanding sleep quality and waking cervico-thoracic symptoms. Inet. J. Allied Health Sci. Pract. 5, 1–12 (2007)
Guérin, C., Reignier, J., Richard, J.C., Beuret, P., Gacouin, A., Boulain, T., Mercier, E., Badet, M., Mercat, A., Baudin, O., et al.: Prone positioning in severe acute respiratory distress syndrome. New Engl. J. Med. 368(23), 2159–2168 (2013)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518
Hsia, C.C., Liou, K., Aung, A., Foo, V., Huang, W., Biswas, J.: Analysis and comparison of sleeping posture classification methods using pressure sensitive bed system. In: IEEE International Conference on Engineering in Medicine and Biology Society (2009)
Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8(2), 179–187 (1962)
Huang, W., Wai, A.A.P., Foo, S.F., Biswas, J., Hsia, C.C., Liou, K.: Multimodal sleeping posture classification. In: IEEE International Conference on Pattern Recognition (2010)
Idzikowski, C.: Sleep position gives personality clue. BBC News, 16 September 2003
Khoury, R.M., Camacho-Lobato, L., Katz, P.O., Mohiuddin, M.A., Castell, D.O.: Influence of spontaneous sleep positions on nighttime recumbent reflux in patients with gastroesophageal reflux disease. Am. J. Gastroenterol. 94(8), 2069–2073 (1999)
Koprinska, I., Pfurtscheller, G., Flotzinger, D.: Sleep classification in infants by decision tree-based neural networks. Artif. Intell. Med. 8(4), 387–401 (1996)
Kuo, C.H., Yang, F.C., Tsai, M.Y., Ming-Yih, L.: Artificial neural networks based sleep motion recognition using night vision cameras. Biomed. Eng.: Appl. Basis Commun. 16(02), 79–86 (2004)
Lewicke, A., Sazonov, E., Corwin, M.J., Neuman, M., Schuckers, S.: Sleep versus wake classification from heart rate variability using computational intelligence: consideration of rejection in classification models. IEEE Trans. Biomed. Eng. 55(1), 108–118 (2008)
Liao, W.H., Yang, C.M.: Video-based activity and movement pattern analysis in overnight sleep studies. In: IEEE International Conference on Pattern Recognition (2008)
Morong, S., Hermsen, B., de Vries, N.: Sleep position and pregnancy. In: de Vries, N., Ravesloot, M., van Maanen, J.P. (eds.) Positional Therapy in Obstructive Sleep Apnea, pp. 163–173. Springer, Switzerland (2015)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Penzel, T., Conradt, R.: Computer based sleep recording and analysis. Sleep Med. Rev. 4(2), 131–148 (2000)
Ramagiri, S., Kavi, R., Kulathumani, V.: Real-time multi-view human action recognition using a wireless camera network. In: International IEEE Conference on Distributed Smart Cameras (2011)
Sahlin, C., Franklin, K.A., Stenlund, H., Lindberg, E.: Sleep in women: normal values for sleep stages and position and the effect of age, obesity, sleep apnea, smoking, alcohol and hypertension. Sleep Med. 10(9), 1025–1030 (2009)
Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., et al.: Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2821–2840 (2013)
Soban, L., Hempel, S., Ewing, B., Miles, J.N., Rubenstein, L.V.: Preventing pressure ulcers in hospitals. Joint Comm. J. Qual. Patient Saf. 37(6), 245–252 (2011)
Weinhouse, G.L., Schwab, R.J.: Sleep in the critically ill patient. Sleep-New York Then Westchester 29(5), 707 (2006)
Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2878–2890 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Torres, C., Hammond, S.D., Fried, J.C., Manjunath, B.S. (2015). Sleep Pose Recognition in an ICU Using Multimodal Data and Environmental Feedback. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-20904-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20903-6
Online ISBN: 978-3-319-20904-3
eBook Packages: Computer ScienceComputer Science (R0)