Skip to main content

An Unexpectedness-Augmented Utility Model for Making Serendipitous Recommendation

  • Conference paper
  • First Online:
Advances in Data Mining: Applications and Theoretical Aspects (ICDM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9165))

Included in the following conference series:

  • 1806 Accesses

Abstract

Many recommendation systems traditionally focus on improving accuracy, while other aspects of recommendation quality are often overlooked, such as serendipity. Intuitively, a serendipitous recommendation is one that provides a pleasant surprise, which means that a suggestion must be unexpected to the user, and yet it must be useful. Based on this principle, we propose a novel serendipity-oriented recommendation mechanism. To model unexpectedness, we combine the concepts of item rareness and dis-similarity: the less popular is an item and the further is its distance from a user’s profile, the more unexpected it is assumed to be. To model usefulness, we adopt PureSVD latent factor model, whose effectiveness in capturing user interests has been demonstrated. The effectiveness of our mechanism has been experimentally evaluated based on popular benchmark datasets and the results are encouraging: our approach produced superior results in terms of serendipity, and also leads in terms of accuracy and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamopoulos, P., Tuzhilin, A.: On unexpectedness in recommender systems: or how to expect the unexpected. In: Proceedings of RecSys 2011, Chicago, IL, USA, 23–27 October 2011, pp. 11–18. ACM, New York (2011)

    Google Scholar 

  2. Adomavicius, G., Kwon, Y.: Toward more diverse recommendations: item reranking methods for recommender systems. In: Proceedings of WITS 2009, Phoenix, AZ, USA, 14–15 December 2009. SSRN, New York (2009)

    Google Scholar 

  3. Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)

    Article  Google Scholar 

  4. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. ACM Commun. 40(3), 66–72 (1997)

    Article  Google Scholar 

  5. Benjamin, W., Chandrasegaran, S., Ramanujan, D., Elmqvist, N., Vishwanathan, S., Ramani, K.: Juxtapoze: supporting serendipity and creative expression in clipart compositions. In: Proceedings of CHI 2014, Tronto, Canada, 26 April–1 May 2014, pp. 341–350. ACM, New York (2014)

    Google Scholar 

  6. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems. In: Proceedings of RecSys 2011, Chicago, IL, USA, 23–27 October 2011. ACM, New York (2011)

    Google Scholar 

  7. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on Top-N recommendation tasks. In: Proceedings of RecSys 2010, Barcelona, Spain, 26–30 September 2010, pp. 39–46. ACM, New York (2010)

    Google Scholar 

  8. Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of RecSys 2010, Barcelona, Spain, 26–30 September 2010, pp. 257–260. ACM, New York (2010)

    Google Scholar 

  9. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  10. Hurley, N., Zhang, M.: Novelty and diversity in Top-N recommendation - analysis and evaluation. ACM Trans. Internet Technol. 10(4), 14 (2011)

    Article  Google Scholar 

  11. Bennett, J., Lanning, S.: The netflix prize. In: Proceedings of KDD Cup and Workshop, California, USA, 12 August 2007. ACM, New York (2007)

    Google Scholar 

  12. Kim, H.N., Saddik, A.E., Jung, J.G.: Leveraging personal photos to inferring friendships in social network services. Expert Syst. Appl. 39(8), 6955–6966 (2012)

    Article  Google Scholar 

  13. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of SIGKDD 2008, Las Vegas, NV, USA, 24–27 August 2008, pp. 426–434. ACM, New York (2008)

    Google Scholar 

  14. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  15. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  16. Lucas, J.P., Luz, N., Moreno, M.N., Anacleto, R., Almeida Figueiredo, A., Martins, C.: A hybrid recommendation approach for a tourism system. Expert Syst. Appl. 40(9), 3532–3550 (2013)

    Article  Google Scholar 

  17. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: Proceedings of CHI EA 2006, Montréal, Canada, 22–27 April 2006, pp. 1097–1101. ACM, New York (2006)

    Google Scholar 

  18. Murakami, T., Mori, K., Orihara, R.: Metrics for evaluating the serendipity of recommendation lists. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 40–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Özbal, G., Karaman, H., Alpaslan, F.N.: A content-boosted collaborative filtering approach for movie recommendation based on local and global similarity and missing data prediction. Comp. J. 54(9), 1535–1546 (2011)

    Article  Google Scholar 

  20. Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: Proceedings of SIGKDD 1998, New York, NY, USA, 27–31 August 1998, pp. 94–100. AAAI Press, California (1998)

    Google Scholar 

  21. Qiuxia, L., Chen, T., Zhang, W., Yang, D., Yu, Y.: Serendipitous personalized ranking for Top-N recommendation. In: Proceedings WI 2012, Macau, China, 4–7 December 2012, pp. 258–264. IEEE Computer Society, Washington (2012)

    Google Scholar 

  22. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of Netnews. In: Proceedings of CSCW 1994, Chapel Hill, North Carolina, USA, 22–26 October 1994, pp. 175–186. ACM, New York (1994)

    Google Scholar 

  23. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of WWW 2001, Hong Kong, China, 1–5 May 2001, pp. 285–295. ACM, New York (2001)

    Google Scholar 

  24. Steck, H.: Training and testing of recommender systems on data missing not at random. In: Proceedings of SIGKDD 2010, Washington, DC, USA, 25–28 July 2010, pp. 713–722. ACM, New York (2010)

    Google Scholar 

  25. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of WWW 2005, Chiba, Japan, 10–14 May 2005, pp. 22–32. ACM, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horace H. S. Ip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zheng, Q., Chan, CK., Ip, H.H.S. (2015). An Unexpectedness-Augmented Utility Model for Making Serendipitous Recommendation. In: Perner, P. (eds) Advances in Data Mining: Applications and Theoretical Aspects. ICDM 2015. Lecture Notes in Computer Science(), vol 9165. Springer, Cham. https://doi.org/10.1007/978-3-319-20910-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20910-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20909-8

  • Online ISBN: 978-3-319-20910-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics