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Abstract. When errors are inevitable during data classiftoatfinding

a particular part of the classification model whiohy be more suscep-
tible to error than others, when compared to figdin Achilles’ heel of
the model in a casual way, may help uncover speeifior-sensitive
value patterns and lead to additional error redaatheasures. As an in-
itial phase of the investigation, this study narsaWe scope of problem
by focusing on decision trees as a pilot model etgps a simple and
effective tagging method to digitize individual msdof a binary deci-
sion tree for node-level analysis, to link and lratassification statis-
tics for each nodén a transparent way, to facilitate the identifioat
and examination of the potentially “weakest” nodes error-sensitive
value patterns in decision trees, to assist canatysis and enhance-
ment development.

This digitizationmethod is not an attempt to re-develop or transform
the existing decision tree model, but rather, @pratic node 1D formu-
lation that crafts numeric values to reflect theetstructure and decision
making paths, to expand post-classification analysidetailed node-
level. Initial experiments have shown successfsults in locating po-
tentially high-risk attribute and value patternisistis an encouraging
sign to believe this study worth further exploratio

1 Introduction

The ultimate goal of this study is to find the mpsbblematic and error-sensitive
part of a classification model, and this would riegjthe collection, identification and
comparison of classification statistics of its widual component parts. Decision
trees have been selected as the pilot model far shidy because it is a well-
researched classification model with a simple $tmg; decisions on attributes and
values are clearly displayed in a form of brandoas nodes, as shown in Figure 1.
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Figure 1 - A decision tree example

Using the first branch of the above decision treamexample:
alml <= 0.57 and aac <= 0.64 and mcg <= 0.73: neg (189.0/6.0)

This branch contains three nodes with three spitpvalues, (1) <= 0.57 for at-
tribute “alml”, (2) <= 0.64 for attribute “aac”, an(3) <= 0.73 for attribute “mcg”.
While all these three split points play a role éading to the 6 classification errors
amongst the 189 instances along this classificggath in the form of a decision tree
branch, one key question is, which node and ietedl attribute and value may have
been more susceptible to the 6 errors? When exparbis node-specific examina-
tion to all branches of the decision tree moded, dhestion can then generalized as —
are there some tree nodes more error-prone andsamgitive than others? If so, can
the most error-sensitive nodes and their relateibates and values be identified in a
systematic way? These two questions are now thesfotthis study.

The rest of this paper is organized as follows.tiBec2 describes some initial
questions and thoughts that led to the decisiandigitization idea. Section 3 reviews
some early influential work that inspired this stu8ection 4 outlines the major steps
in the decision tree digitization process. SecBoaummarizes experiments on five
datasets. Section 6 discusses the experiment semudt their implications. Finally,
Section 7 concludes the current progress and esthinplan for future exploration.

2 Initial issues and background

Decision trees provide an easy-to-follow graphidalv of the classification pro-
cess at a glance, outlines each classificationfrala root to leaf step by step in the
form of node by node. One issue with such visuptegentation is, when a large da-
taset is used and the decision tree structure bes@wmplex, its graphical view can



be clustered and muddled by the full-blown massridscross branches and nodes
even when pruning is applied. It can obscure teetification of attributes and values
when detailed analysis is required on certain diaaton rules and components.

Another issue is, when node-level statistics ageired in such a detailed analysis,
the visual space reserved for each node on a dedige may not be the most suita-
ble place to present its node-level statistic v&lw@es this would cluster the presenta-
tion of existing branches and nodes even furtheking the node scanning and visual
interpretation process even more difficult.

One possible solution to address these issuee ovide a unique tag for each
tree node, to collect and maintain the node-lelaslsification statistics away from the
tree structure, and to link them with their respechode by using the unique node
tag as the retrieval key. As a result, classifaastatistics of each node can be stored
and analyzed without any convoluted addition toekisting tree structure.

This decision tree digitization method and erransséve pattern analysis may
seem trivial when compared to some major publisherk as outlined in Section 3,
but because no such specific analysis has beemvebisso far, that nevertheless in-
spired this study and the digitization idea deveiept.

3 Related work

Decision tree classification and attribute selettiwethodologies are two key re-
search areas closely related to this study. Amathgstvast number of research litera-
ture and many innovative algorithms on decisiordréhe C4.5 model [1] and CART
model [2] are two benchmarks used as the foundatimhguidance for the proposed
decision tree digitization method. While the C4.6dwl utilizes the gain ratio to “di-
vide and conquer” data attributes and values tmfarclassification tree, the CART
model makes use of the Gini impurity measure td fp¢ attributes and data values
to build a decision tree.

In the area of attribute selection, many of theoremed methodologies, such as In-
formation Gain, Gain Ratio, Gini Index, RELIEF, SBS8d SBE algorithm [1-6], as
well as some newly established techniques suctA&Ag7] and UFSACO [8], they
have been developed as a pre-process proceduseaor iategrated part of the classi-
fication process. One key logic shared by theserikgns is to select and prioritize
the most informative and differentiating data atites before or during classification.
While these methodologies have improved the claasibn performance in a holistic
and “macro” way, they are not particularly desigtedcexamine attribute and value
patterns at an individual node and “micro” level.

Ongoing research and development have resultedemwiques in data sampling
and classification process, such as bagging [9stieg [10] and randomization to
reduce bias [11], and provided the ground for iidlial tree models to be incorpo-
rated into an ensemble of tens or hundreds or tha@rsands of classifiers to achieve
better performance. For example, the AdaBoost mdd|that adapts a weak learn-
ing algorithm such as a decision tree model asrirsg point, then to reweight sam-
ples, retrain and rebuild a new tree after eacrin¢diate learning cycle, and to vote



in the best performing tree from “the crowd”. Ramdrest [13] is another popular
ensemble approach; it applies the bagging techrtig@esubset of attributes as well
as training samples that are randomly selectegenerate new trees via iterations and
to vote in the best performing tree amongst theee “the forest”. The AdaTree
method [14], the Probabilistic Boosting-Tree metlips], and a combined Bayesian
model approach [16] are some new additions to tisemble trend development.

Compared to standalone decision tree models, erleemdthods provide higher
accuracy but at the cost of increased complexity eemputational resources, the
clarity and ease of result interpretation have &lsen reduced [17-18]. Amongst the
above and other major literatures that have beadiest, detailed analysis on error-
sensitive attributes and values had not been appada&e recent evaluation study on
error-sensitive attributes (ESA) [19] intended &gin a detailed examination at an
attribute level based on three specific terms udimgry decision trees. The term
“ambiguous value range” describes the “overlappelie ranges between Positive
and Negative instances; the term “attribute-ermunter” describes the number of
misclassified instances of an attribute with atttébvalues reside in ambiguous value
ranges; and the term “error-sensitive attributeSadibes an attribute that is consid-
ered to be more prone and risky to cause or agsowith errors in a data classifica-
tion process. All the above work has provided eitie inspiration or the basis for
the current study, and explained why decision tieege been adopted as the pilot
model in this initial phase.

4 The decision tree digitization process

A decision tree model can be transformed into aayaof branches and each
branch consists of an array of nodes, and each mepadesents its underlying attribute
and value’s split point condition. Because eachenodn be considered as a child
node from its immediate parent node, and all lewélparent nodes can be traced
back to the root node as the origin, thereforehewle can be uniquely identified by
a form of regression or inference process basetsdnerarchical position within the
tree and using the root as the starting point, agdaphical tree can subsequently be
mapped into a matrix of referential and digitizeatle IDs, which can link and re-
trieve node level classification statistics foralletd analysis. The following pseudo
code outlines the digitization process step-by:step

Input: a binary decision tree witim branches and each branch contains a varying
number of nodes, and a dataset witinstances

Output: an enumerated map of individual node IDs andlieatton of node level
classification statistics

Process stage-1 is to enumerate each tree node and praalucap of node IDs;
stage-2 is to collect classification statisticsifatividual nodes and using IDs as keys

Stage-1: construct an enumerated decision tree map
for 1 tom branches of the decision tree
for all nodes in the current branch



1. if anode is the root node then assign “1” asstaeting value of its node
ID

2. ifanode is an immediate child node from the romde, then first append
a “.” to the current node ID as a node delimitdren add x to form 1.x as
its 2 part of the node ID, x denotes the current nunobénmediate
child nodes branching out from the root and incretsidy 1 by counting
from left to right, e.g. 1.1 as thé' thild node, 1.2 as thé“xhild node,
and so on

3. if a non-root node has child nodes then first appefi” to the current
node ID as a node delimiter, then assign 1 to°ltishlld node on the left
as its node D, assign 2 to it&2hild node on the right as its node ID; a
node ID example is: 1.1.2.2.2.1

Stage-2: traverse and collect individual node leletsification statistics
for 1 ton data instances
for 1 tom branches in the enumerated matrix map
for all nodes in the current branch
1. if current instance’s attribute value satisfiesrent node’s split point val-
ue condition, then continues to next node alongeciitbranch
2. if current node’s split point condition cannot laisfied, then advance to
the start of next branch in the map
3. if end of current branch is reached and the leafer@ondition is satisfied,
then update and store the node-level statisticgyubie node ID as the key
for all nodes of the current branch, and move éortéxt data instance

On completion of the tree digitization and statistcollection, a simple ranking of
the classification error rate by node IDs can thetentially reveal the “weakest” and
most error-sensitive node in the tree. The wordéptally” has to be highlighted and
emphasized here. Using a node’s error rate valsiead of its error count humber
may avoid the bias towards “heavy traffic” nodesywever, this may unduly magnify
the “weakness” of some “low traffic” nodes. For exae, node-A has been traversed
by 10 instances with 5 errors and its error rat&0%, node-B has been traversed by
100 instances with 48 errors and its error rat#8i%, while node-A is subsequently
ranked as a “weaker” node than node-B by compaeingr rate, this may not neces-
sarily be true when more data are used for testimg.later stage of the study, signifi-
cant test and threshold value control on seleatiiteria can be implemented as an
enhancement measures.

Nevertheless, this decision tree digitization mdti®another step forward in the
study of error-sensitive value patterns in datsgifecation, and results of initial ex-
periments appeared to be supporting this idea.

5 Experiments

During the evaluation study of error-sensitiveihtites (ESA) [19], five UCI da-
tasets [20], Ecoli, PIMA Diabetes, Wisconsin Canceiver Disorder and Page
Blocks, were used in the evaluation process. Thesasets have been used again in



the current study so their experiment results caramalyzed and compared side by
side against the ESA evaluation results. Experimdrave been conducted using
WEKA's [21] C4.5/J48 decision tree classifier wiatandard configuration, e.g. con-
fidence factor for pruning is 0.25, minimum numloérinstances per leaf is 2, MDL
correction is used and test option is 10-fold cneagdation.

5.1 Digitization reflects decision trees in a concisena effective way

A decision tree model for the Ecoli dataset corstainbranches and 13 nodes, as
shown in Figure 1. On completion of its digitizatjgdhe digitized form of branches
and nodes is shown in th& fow of Table 1. Each node is uniquely tagged loljgé
tal ID, and each ID reflects the node’s hierarchiceation in the tree. Because of its
self-structured and self-referenced nature, thealfb encapsulates its preceding
nodes of the same branch and presents itself asnpact and enumerated decision
path; therefore, a collective display of each bresieaf node resembles the decision
tree model in a simplified and digitized form, &swn in the 2 row of Table 1.

Table 1 - Ecoli dataset's decision tree in digitizeform

Branch1:1.0->1.1->1.1.1 &1.1.:
Branch2:1.0->11->111->1.1.12->11121.1.1.2.1.1
Branch3:1.0->11->111->1.1.12->11121.1.1.2.1.2
Branch4:1.0->1.1->1.1.1->1.1.1.23:4.1.2.2
Branch5:1.0->1.1->1.1.2%1.2.1

Branch 6:1.0->1.1->1.1.2+1.2.2

Branch 7: 1.0 -4.2

Numerated tree map showing
all node IDs in each decision
path

Branch 1:1.1.1.1
Branch 2:1.1.1.2.1.1
Branch 3:1.1.1.2.1.2
Branch 4:1.1.1.2.2
Branch 5:1.1.2.1
Branch 6:1.1.2.2
Branch 7:1.2

Leaf-node IDs resemble a
simplified and enumerated tree

In the second example, the Pima diabetes datasé¢lrhas 20 branches and 39
nodes, as shown in the left column of Table 2, theye been concisely and effective-
ly represented by their leaf-node IDs, as showthénright column of Table 2:

Table 2 - Pima dataset's decision tree representdyy enumerated leaf-node IDs

Pima diabetes dataset’s decision tree model ‘ Leaf-de IDs
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Similarly, the Wisconsin cancer dataset’s decisiee which has 14 branches and
27 nodes, the Liver Disorders dataset’'s decisiea which has 26 branches and 51
nodes, and the Page Blocks dataset’s decisionwhéeh has 41 branches and 81
nodes, all have been correctly mapped by theirredke IDs respectively in a concise

manner, as shown in Table 3:

Table 3 - Another 3 decision trees represented bynemerated lead-node IDs

Wisconsin cancer dataset’'s
enumerated decision tree

Liver Disorders dataset’s
enumerated decision tree

Page Blocks dataset’'s
enumerated decision tree

Branch 1: 1.1.1 Branch1:1.1.1.1

Branch 2: 1.1.2.1 Branch 2:1.1.1.2.1

Branch 3: 1.1.2.2.1.1 Branch 3:1.1.1.2.2.1.1

Branch 4: 1.1.2.2.1.2 Branch 4:1.1.1.2.2.1.2.1

Branch 5: 1.1.2.2.2 Branch 5:1.1.1.2.2.1.2.2.1

Branch 6: 1.2.1.1 Branch 6:1.1.1.2.2.1.2.2.2

Branch 7: 1.2.1.2

Branch 8: 1.2.2.1.1.1 Branch 17:1.2.1.1.2.1.2.2.1

Branch 9: 1.2.2.1.1.2 Branch 18:1.2.1.1.2.1.2.2.2

Branch 10: 1.2.2.1.2.1.1 Branch 19: 1.2.1.1.2.2.1

Branch 11:1.2.2.1.2.1.2.1 Branch 20: 1.2.1.1.2.2.2.1

Branch 12:1.2.2.1.2.1.2.2

Branch 13:1.2.2.1.2.2 Branch 24:1.2.2.1.2.1

Branch 14: 1.2.2.2 Branch 25: 1.2.2.1.2.2
Branch 26: 1.2.2.2

Branch1: 1.1.1.1
Branch 2: 1.1.1.2
Branch 3: 1.1.2.1.1.1

é'ranch 12
Branch 13
Branch 14

I.E’;.ranch 30
Branch 31
Branch 32

Branch 39
Branch 40
Branch 41

:1.1.2.2.2
:1.21
:1.221.1.111

11.221.2.1.12.1.21
11.221.2.1.121.22
11.221.21.1.2.2

11.22221
11.222221
11.2.2.2.2.2.2

Once each individual

node is uniquely tagged, lassification statistics can then

be collected, stored and analyzed at an individode- and micro-level, as compared
to the typical holistic model- and macro-level as&@ based on the whole decision
tree and its overall result. Some of the statistmtection and comparison results are
documented in the following section.



5.2

Node-level statistics comparison and error-sensite/pattern identification

There may be different ways to examine the nodellstatistics, for example, to
compare the “heaviest” and “lightest” nodes using highest and lowest counts of
instances that traversed through, but the focukisfstudy is to identify and explore
the “weakest” nodes with the highest error ratektar involved value patterns.

As a first step, the attributes and values involwétth the top-3 nodes in error rate
ranking are compared with the top-3 ranked attebutlentified in the error-sensitive
attribute (ESA) evaluation [19], to cross-checkstheéwo different error-sensitive
pattern evaluation methods, as shown in Table & $howing that three datasets -
Pima, Wisconsin and Page Blocks, have closely coampa “underscored” error-
sensitive attributes, and two datasets - Ecolilamdr Disorders, have partially com-

parable “underscored” error-sensitive attributes.

Table 4 - The "weakest" nodes' attributes & valuesvVS. The most error-sensitive attributes

Ecoli dataset’s enumerated tree node & error-rate Attributes identified in ESA
Rank ) . . .
... attributes & values involved evaluation by attribute-error count
1 [1.2(3.36% 4/119 ... alm1>0.57 chg (17)
2 |1.1.1.2(3.17%: 6/189) ..alm1<=0.57 & aac<=0.64 & mcg<=0.73 almi (15)
3 [1.1.1(3.02%: 6/199) ..alm1<=0.57 & aac<=0.64 lip (14)
Rank Pima diabetes datas¢s enumerated tree 1ode & error-rate Attributes identified in ESA
... attributes & values involved evaluation by attribute-error count
1.1.2.2.2. (40.48% 34/84) ... plax=127 & mass26.4& age>28 &
1 blas99 & pedi<=0.561 plas(83)
1.2.2.1.2. (32.50%: 13/40) ..plas>127 & mas$29.9 &plax=157 &
2 |ores>61 8agec=30 nmass(70)
1.1.2.2.:(30.51%: 36/118) ..plax<=127 &mas$26.4 &age>28 &
3 blas-99 age(31)
Wisconsin cancer dataset’s enumerated tree node &rer-rate Attributes identified in ESA
Rank ] - . .
... attributes & values involved evaluation by attribute-error count
1.2.21.2.1.2.:(20.00% 1/5) ... UC_Sz2 & UC_Sh»2 & UC_Sx=4 & . .
1 Bare Nuc>2 &Clump_Th=6 & UC_Sz3 & Mg_Adh<=5 UC Sz- Unif Cell Size (35)
1.2.2.1.2.1. (15.38%: 2/13) ..UC_Sz2 & UC_Str2 & UC_Sx=4 & .
2 |Bare Nuc>2 &Clump The=6 & UC_Sx=3 UC_Sh- Unif Cell Shape (35)
1.2.2.1.2. (13.04%: 3/23) ..UC_Sz2 & UC_Sk»2 & UC Sx=4 & .
3 Bare Nuc>2 &Clump_TH=6 Clump_Th- Clump Thickness (30
Rank Liver Disorders datase’s enumerated tree 1ode & error-rate Attributes identified in ESA
... attributes & values involved evaluation by attribute-error count
1 1.2.2.1.2.:(40.91% 18/44)... gammagt>20 & drinks>5 & drinks<=12 & sq0t(22)
sgpt>21 &sgot22 99!
2 1.1.2.2.1. (38.10%: 8/21)... gammagt<=20 & sgpt>1%&0t20 & mev (16)
drinks<=5 & sgpt<= 26
; oL - -
3 1.2.2.1..(34.55%: 19/55)... gammagt>20 & drinks>5 & drinks2-& alkphos (10)
sgpt >21
Rank | Page Blocks dataset's enumerated tree node & erraste | Attributes identified in ESA




... attributes & values involvec evaluation by attribute-error count
1.2.2.1.1.1.2.1.1 (30.00% 3/10)... height>3 &eccer0.25 & height <=2}
& whb_trans<=7 &p_black=0.178 & wb_trans>4 & blackpix <=20 & mean_tr(89)
area<=108 & blackpix>7
1.1.2.1.1. (28.57%: 2/7)... height<=3 &ean_tr1.35 & lenght<=7 &
height<=2(& blackpix<:)7 ’ ’ p_black(43)
1.1.22.1.1.1.:(25.00%: 1/4) ... height<=3 &ean_tr1.35 & lenght> 7 &
mean_t£=4.08 & height<=1 & wb_trans<=2 &ean_tr3.75
1.2.2.1.1.1.2.1 (25.00%: 3/12)... height>3 &ccer»0.25 & height<= 27 eccen(29)
& whb_trans<=7 &p_black=0.178 & wb_trans>4 & blackpix<= 20 & ar¢a
<=108

In a second step, data records associated witlwisekest” nodes identified by the
digitization method are removed and a re-test isiezh out, and another re-test is
carried out on the datasets after certain most-sgwsitive attributes are removed as
specified in the ESA evaluation study [19]. Initiekults confirm improved accuracy
in all five datasets after the “weakest” records @@moved, and one improved signifi-
cantly, as shown in Table 5. Also outlined in ttaible are the ESA removal scenario
retest results, three datasets return improvedracguand the other two return poorer
accuracy, and further analysis on the resultssisudised in the Section 6.

Table 5 — Three-way performance comparison after ni@moving the potentially “weak-
est” records and the most error-sensitive attributs

Ecoli’s original dataset of
336 records

Re-test 217 records after
removing 119 “weakest” records

Re-test original data after removing
top most ESA —alm1

Accuracy: 94.05% with 20 errors

Accuracy: 97.70%hve errord]

Accuracy: 92.86% with 24 errobd

Pima diabetes’ original dataset of
768 records

Re-test 684 records after
removing 84 “weakest” records

Re-test original data after removing
top 2 most ESAs plas& mass

Accuracy: 73.83% with 201 errors

Accuracy: 77.19¢hW56 errord/

Accuracy: 67.84% with 247 errobd

Wisconsin cancer’s original datasebf
699 records

Re-test 694 records after
removing 5 “weakest” records

Re-test original data after removing
top 2 most ESAs UC_Sz& UC_Sh

Accuracy: 94.13% with 41 errors

Accuracy: 95.97%hv#8 erroriv

Accuracy: 95.71% with 30 errofg§

Liver Disorders’ original dataset of
345 records

Re-test 30Jrecords after
removing 44 “weakest” records

Re-test original data after removing
top 2 most ESAs sgot& mcv

Accuracy: 68.70% with 108 errors

Accuracy: 77.08%h89 errorsv]

Accuracy: 71.01% with 100 errois

Page Blocks’ original dataset of
5473 records

Re-test 5463 records after
removing 10 “weakest” records

Re-test original data after removing
top most ESA —_mean_tr

Accuracy: 97.19% with 154 errors

Accuracy: 97.368hw44 errord/

Accuracy: 97.24% with 151 errofd




6 Experiment analysis

The purpose of decision tree digitization is not@y to convert a graphical deci-
sion tree into a digital map of nodes, but rathemyse such a digital map to facilitate
the collection of node-level statistics for the gmse of node-level error-sensitive
value pattern analysis, to help highlight the ptédly “weakest” part of the decision
tree and the specific error-sensitive attributed @adues involved, to distinguish data
records with such risky value patters for furtheoeanalysis and the development of
error-reduction measure. Results from the initigdeximents appeared to be support-
ing this digitization idea and the identificatiohtbe “weakest” node and the related
attribute and value patterns. The following sediaiscuss the results and possible
implications.

6.1 Digitized node IDs facilitate node-level analysis

The proposed decision tree digitization method rmdke node-level analysis easy
by formulating individual node IDs in a unique, nemc and contextual way. For
example, the ID 1.2.1.1.2.1.2.2.1 as shown in therLDisorders example, is in a
numeric text string format and incorporated withgteceding node IDs hierarchically
within the same branch starting from the root. Bseaeach ID is unique to the node
in the tree, classification statistics can thencb#ected and stored for individual
nodes using their IDs as the keys, and later tatéoand retrieve the node-level statis-
tics more efficiently than using the branch andenddscription text, e.ggammagt >
20 & drinks<= 5 & drinks<= 3 & alkphos > 65 & sgot <= 24 & gammagt > 29 &
mecv > 87 & mev <= 92", even if such lengthy verbiage is consolidated simplified
as ‘gammagt > 29 & drinks <= 3 & lkphos > 65 & sgot <= 24 & mcv between 87
and 92", it is still awkward. As decision trees grow by, such concise node IDs
can become more useful because of its systematisalfireferential characteristics.

One way to utilize such node-level statistics dsyanking the classification error
rate from high to low, the top node with the highesor rate may then be considered
as the “weakest” node in the tree, and the atedbwand values associated with the
“weakest” node may be considered more error-seeditian others, in relative terms.

6.2 Examine the “weakest’ nodes and error-sensitive vak patterns

To evaluate the effectiveness of the proposedizigibn method, the subsequent
node-level investigative results can be validatg@dérformance comparison, and one
practical but rather non-deterministic measure lsarto compare the classification
accuracy after some simplistic error-reduction raemass applied. For example, by
using the attribute and value patterns associaitdthe “weakest” node, the poten-
tially “weakest” and most error-sensitive data relsp include both the misclassified
and correctly classified data instances, can batifitsd and separated for further
examination, and the original dataset becomes smiallsize but potentially higher in
reliability and accuracy. Experiment results seert@atonfirm the validity of the
“weakest” node and the associated error-sensitaleevpatterns in all five datasets,



one with a significant improvement in accuracy, aiers with a modest but con-
sistent level of improvement.

The best example is the Wisconsin cancer datasbt699 records. After sorting
and ranking the classification error rate of indival nodes, node 1.2.2.1.2.1.2.1
(20.00%: 1/5) is identified as the “weakest” noag shown in Table 4. When the five
data records associated with this “weakest” nodadentified and separated from the
dataset, that is 5/699=0.007% reduction in samjae, she accuracy improves by
almost 2% in a re-test, as shown in Table 5. Imstefaone less error due to the re-
moval of five error-sensitive records, there ardek3 errors in the re-test.

The other four datasets also show various levelsuotess in accuracy enhance-
ment. For example, in the Liver Disorders datasét 845 records, node 1.2.2.1.2.2
(40.91%: 18/44) is identified as the “weakest” node shown in Table 4, and there
are 44 records associated with this node and 18esh are errors. A re-test to the
updated dataset after the removal of those 44-sewsitive records shows the actual
error reduction is 39 instead of 18, and the oVeaaturacy has improved from
68.70% in the original dataset to 77.08% in theaied dataset.

One possible explanation to such impressive résuthe inclusions of the “weak-
est” data records have made “potentially signifitaverse impact to the info-gain
(entropy) calculation when constructing C4.5/J48iglen trees because of their er-
ror-sensitive attributes and values, which leadsrtor-prone split point conditions
and the consequent “weakest” nodes. If the impatass significant, then the differ-
ence between the original and re-test result maydbeso noticeable, as shown in the
Page Blocks dataset.

This reasoning may partially explain why ensembée tmodels, such as Random
Forest, are considered superior to standalonemiztels. The Random Forest model
selects a portion of the data attributes randomlky generates hundreds and thou-
sands of trees accordingly, and then votes fob#w performing one to produce the
classification result. The random attribute setettprocess may have inadvertently
generated and voted for trees without some highiyresensitive attributes, and also
with bigger value ranges to split on due to fewttikautes involved, therefore enables
ensemble models to produce more accurate resultsyrbthe expense of resources
and simplicity.

6.3 Discuss possible contribution, effectiveness and akness

The evaluation study on error-sensitive attribi1&§ has provided some construc-
tive leads for this current study, but this deaisitee digitization and node-level ex-
amination idea can be considered as another ste@iftd because of its expansion
from attribute level evaluation to individual noded split-value level evaluation.
While still at an early stage, this latter expanséind study has shown encouraging
and consistent experiment results, therefore,dduisbe considered as a potential con-
tribution to the node-level analysis topic for dgan trees.

In terms of effectiveness, this digitization mettaggplies a digital way to tag each
individual node of a decision tree uniquely andasely with contextual reference, to
simplify node-level statistics collection and argdyand expand the typical tree-level



“macro” analysis with focus on the whole classifioa model into the node-level
“micro” analysis with focus on specific attributesd values, and in a systematic and
transparent way.

Meanwhile, the list of weakness of this study isoalong and obvious. First, the
successful experiments are based on the removia¢ ¢fveakest” data records, which
may seem drastic and lacking of formal and thecakproof; however, this has still
highlighted the usefulness in identifying the “wesaK value patterns. This has led to
the second major weakness - it is unclear whatatavidh the “weakest” records.
Their removal improves overall accuracy, so a newstjon is, should a separate
model be used to evaluate these error-sensitiverds® If the “one size fits all” ap-
proach is not recommended, why not introduce arsépanodel for the “doubtful”
data? The third major weakness is, this study ishased on ensemble methods, and
ensemble trees are now the preferable classifitatiodels due to their superior per-
formance to the standalone decision tree modeis,ntfakes the proposed decision
tree digitization method less relevant to the latéssssification development. Despite
more weaknesses are still to be discussed, they lbeen recognized and will be used
as a form of inspiration to broaden and advancedtidy.

7 Conclusion

This study attempts to address the question -Héset a way to identify an Achil-
les’ heel of a classification model?”, that is,diimg a way to locate the ‘weakest’ and
most error-sensitive spot in the model. Towards ual, the study develops a deci-
sion tree digitization method to facilitate the ritlécation and examination of the
potentially “weakest” nodes and error-sensitiveueapatterns in the model using
decision trees as a pilot model. Initial experimpeate demonstrated successful re-
sults when comparing to earlier evaluation studgrobr-sensitive attributes, but also
prompted more questions.

Many of the study’s own weak and questionable aheas been recognized, such
as the need of formal and theoretical proof, thgaesion of evaluation into ensemble
methods and non-binary trees etc., and they withfthe basis for the next phase of
the study, such as a revision of the digitizaticethod to cover ensemble models, and
to find a more logical way to understand and wilihe “weakest” data records with
error-sensitive value patterns.
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