Skip to main content

Volume Frameworks and Deformation Varieties

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9201))

Included in the following conference series:

  • 468 Accesses

Abstract

A volume framework is a \((d+1)\)-uniform hypergraph with real numbers associated to its hyperedges. A realization is given by placing the vertices as points in \({\mathbb {R}}^d\) in such a way that the volumes of the simplices induced by the hyperdges have the assigned values. A framework realization is rigid if its underlying point set is determined locally up to a volume-preserving transformation, otherwise it is flexible and has a non-trivial deformation space. The study of deformation spaces is a challenging problem requiring techniques from real algebraic geometry. Complementing a previous paper on Realizations of volume frameworks, we study several properties of deformation spaces, including singularities, for families of volume frameworks associated to polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asimov, L., Roth, B.: The rigidity of graphs. Trans. Amer. Math. Soc. 245, 279–289 (1978)

    Article  MathSciNet  Google Scholar 

  2. Bobenko, A., Kenyon, R., Sullivan, J.M., Ziegler, G.: Discrete differential geometry, Tech. Rep. 12/2006, Mathematisches Forschungsinstitut Oberwolfach (2006)

    Google Scholar 

  3. Borcea, C.S.: Point configurations and Cayley-Menger varieties. arXiv: math.AG/0207110

    Google Scholar 

  4. Borcea, C.S.: Association for flag configurations, in Commutative Algebra, Singularities and Computer Algebra, NATO Science Series, vol. 115, p. 1–8. Kluwer (2003)

    Google Scholar 

  5. Borcea, C.S.: Polygon spaces, tangents to quadrics and special Lagrangians, Oberwolfach Reports, pp. 2181–2183. European Mathematical Society (2004)

    Google Scholar 

  6. Borcea, C.S., Streinu, I.: The number of embeddings of minimally rigid graphs. Discrete Comput. Geom. 31, 287–303 (2004)

    Article  MathSciNet  Google Scholar 

  7. Borcea, C.S., Streinu, I.: Realizations of volume frameworks. In: Ida, T., Fleuriot, J. (eds.) ADG 2012. LNCS, vol. 7993, pp. 110–119. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Borcea, C.S., Streinu, I.: Periodic frameworks and flexibility. Proc. Roy. Soc. A 466, 2633–2649 (2010)

    Article  MathSciNet  Google Scholar 

  9. Borcea, C.S., Streinu, I.: Minimally rigid periodic graphs. Bull. Lond. Math. Soc. 43, 1093–1103 (2011). doi:10.1112/blms/bdr044

    Article  MathSciNet  Google Scholar 

  10. Borcea, C.S., Streinu, I.: Frameworks with crystallographic symmetry. Philos. Trans. R. Soc. A Math. Phy. Eng. Sci. 372, 1317–1321 (2014). doi:10.1098/rsta.2012.0143

    MathSciNet  Google Scholar 

  11. Coble, A.B.: Algebraic Geometry and Theta Functions. AMS Colloquium Publications, New York (1929)

    Google Scholar 

  12. Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry. Math. Surv. Monogr. 68, 469 (1999). Amer. Math. Soc

    MathSciNet  Google Scholar 

  13. Coxeter, H.S.M.: Self-dual configurations and regular graphs. Bull. Am. Math. Soc. 56, 413–455 (1950)

    Article  MathSciNet  Google Scholar 

  14. Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions. Astérisque 165, 210 (1988)

    MathSciNet  Google Scholar 

  15. Fischer, J.C., Jamison, R.E.: Properties of affinely regular polygons. Geom. Dedicata. 69, 241–259 (1998)

    Article  MathSciNet  Google Scholar 

  16. Griffiths, Ph, Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library, New York (1994)

    Book  Google Scholar 

  17. Gronchi, P., Longinetti, M.: Affinely regular polygons as extremals of area functionals. Discrete Comput. Geom. 39, 273–297 (2008)

    Article  MathSciNet  Google Scholar 

  18. Harel, G., Rabin, J.M.: Polygons whose vertex triangles have equal area. Amer. Math. Monthly 110(7), 606–619 (2003)

    Article  MathSciNet  Google Scholar 

  19. Harris, J.: Algebraic Geometry, Graduate Texts in Mathematics 133. Springer-Verlag, New York (1993)

    Google Scholar 

  20. Hazama, F.: On the moduli space of polygons with area center, arXiv:1310.0523

  21. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea Publishing Company, New York (1952)

    Google Scholar 

  22. Kantor, S.: Die configurationen \((3,3)_{10}\), sitzungsberichte der mathematisch-naturwissenschaftliche classe der kaiserlichen akademie der wissenschaften. Wien 84, 1291–1314 (1882)

    Google Scholar 

  23. Kapovich, M., Millson, J.: On the moduli spaces of polygons in the Euclidean plane. J. Differ. Geom. 42(1), 133–164 (1995)

    MathSciNet  Google Scholar 

  24. Kapovich, M., Millson, J.: The symplectic geometry of polygons in the Euclidean space. J. Differ. Geom. 44, 479–513 (1996)

    MathSciNet  Google Scholar 

  25. Kapovich, M., Millson, J.: Hodge theory and the art of paper folding. Publi. Res. Inst. Math. Sci. 33(1), 1–31 (1997)

    Article  MathSciNet  Google Scholar 

  26. Kapovich, M., Millson, J.: On the moduli space of a spherical polygonal linkage. Canad. Math. Bull. 42(3), 307–320 (1999)

    Article  MathSciNet  Google Scholar 

  27. Kapovich, M., Millson, J., Treloar, T.: The symplectic geometry of polygons in hyperbolic 3-space. Asian J. Math 4(1), 123–164 (2000). Kodaira’s 75-th birthday volume

    MathSciNet  Google Scholar 

  28. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)

    Article  MathSciNet  Google Scholar 

  29. Maxwell, J.C.: On reciprocal figures. Frames Diagrams Forces, Trans. R. Soc. Edinb. 26, 1–40 (1870)

    Article  Google Scholar 

  30. Sitharam, M., Gao, H.: Characterizing graphs with convex and connected cayley configuration spaces. Discrete Comput. Geom. 43(3), 594–625 (2010)

    Article  MathSciNet  Google Scholar 

  31. Weyl, H.: The Classical Groups: their Invariants and Representations. Princeton University Press, Princeton Landmarks in Math (1997)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the NSF grants CCF-1016988 and CCF-1319366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Streinu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Borcea, C.S., Streinu, I. (2015). Volume Frameworks and Deformation Varieties. In: Botana, F., Quaresma, P. (eds) Automated Deduction in Geometry. ADG 2014. Lecture Notes in Computer Science(), vol 9201. Springer, Cham. https://doi.org/10.1007/978-3-319-21362-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21362-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21361-3

  • Online ISBN: 978-3-319-21362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics