Skip to main content

The Relation Tool in GeoGebra 5

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9201))

Included in the following conference series:

Abstract

GeoGebra is open source mathematics education software being used in thousands of schools worldwide. Its new version 5 supports automatic geometry theorem proving by using various methods which are already well known, but not widely used in education software. GeoGebra’s new embedded prover system chooses one of the available methods and translates the problem specified by the end user as the input for the selected method, similarly to portfolio solvers. The available methods include Wu’s method, the Buchberger-Kapur method, the Area method and Recio’s exact check method, some of them as embedded algorithms, others as outsourced computations. These methods can also be hidden from end users who are provided with an intuitive graphical user interface, the Relation Tool. Since GeoGebra maintains the development in an open-sourced way by collaborating with the OpenGeoProver, Singular and Giac projects, further enhancements can be expected by a larger community, including implementing other methods, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://home.gna.org/geoproof/.

  2. 2.

    http://www.mmrc.iss.ac.cn/gex/.

  3. 3.

    One example of a system planned for teaching proofs interactively is Jacques Gressier’s Géométrix, available at http://geometrix.free.fr.

  4. 4.

    http://wiki.geogebra.org/en/Release_Notes_GeoGebra_5.0#New_Command_Line_Arguments.

  5. 5.

    See http://dev.geogebra.org/trac/wiki/TheoremProving for more details. This documentation includes detailed description of the applied methods and the supported constructions and statements for them.

  6. 6.

    For an example, see http://wiki.geogebra.org/en/ProveDetails_Command.

  7. 7.

    See http://www.geogebratube.org/student/b104296 for an example.

  8. 8.

    Degeneracy conditions can be obtained only by two methods at the moment.

  9. 9.

    See http://test.geogebra.org/~kovzol/data/Prove-20150219b/ for a recent report on benchmarking various theorems with the R-Prover based on computations with Singular and Giac, and compared with OGP’s Wu’s method. The full source code of GPP and its benchmarking system are freely available at https://dev.geogebra.org/trac/browser/trunk/geogebra in folders common/src/main/java/org/geogebra/common/kernel/prover/ and test/, respectively.

  10. 10.

    GeoGebra 5 can be downloaded from its official web site http://www.geogebra.org/download.

  11. 11.

    Java method names in the log are obfuscated to ensure faster results and a smaller software package.

  12. 12.

    To obtain exactly the same result, the user needs to force using SingularWS which is deactivated by default in GeoGebra 5. Enabling SingularWS can be performed by using the command line geogebra --singularws=enable:true e.g. on Linux. When SingularWS is disabled, Giac is used to compute the results: here case 2. (a) (iv.) B. (i.e., “possibly generally true”) will be selected.

References

  1. Hohenwarter, M.: GeoGebra: Ein Softwaresystem für dynamische Geometrie und Algebra der Ebene. Master’s thesis, Paris Lodron University, Salzburg, Austria (2002). (in German)

    Google Scholar 

  2. Narboux, J.: GeoProof, a user interface for formal proofs in geometry. In: Mathematical User-Interfaces Workshop, Electronic Proceedings. Schloss Hagenberg, Linz, Austria (2007). http://www.activemath.org/workshops/MathUI/07/proceedings/Narboux-Geoproof-MathUI07.html

  3. Narboux, J.: A graphical user interface for formal proofs in geometry. J. Autom. Reasoning 39, 161–180 (2007)

    Article  Google Scholar 

  4. Botana, F., Valcarce, J.: A dynamic-symbolic interface for geometric theorem discovery. Comput. Educ. 38, 21–35 (2002)

    Article  Google Scholar 

  5. Ye, Z., Chou, S.-C., Gao, X.-S.: An introduction to Java Geometry Expert. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 189–195. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Wang, D.: GEOTHER 1.1: handling and proving geometric theorems automatically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Petrović, I., Janićič, P.: Integration of OpenGeoProver with GeoGebra (2012). http://argo.matf.bg.ac.rs/events/2012/fatpa2012/slides/IvanPetrovic.pdf

  8. Janičić, P.: Challenges for the next generation mathematics education software. Keynote Presentation at the CADGME 2014 Conference, Halle (Saale), Germany (2014). http://cadgme2014.cermat.org/node/79?width=640&height=450

  9. Quaresma, P., Janičić, P.: GeoThms – a web system for Euclidean constructive geometry. In: Proceedings of the 7th Workshop on User Interfaces for Theorem Provers (UITP 2006). Electronic Notes in Theoretical Computer Science, vol. 174, pp. 35–48 (2007)

    Google Scholar 

  10. Pham, T.-M., Bertot, Y., Narboux, J.: A Coq-based library for interactive and automated theorem proving in plane geometry. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part IV. LNCS, vol. 6785, pp. 368–383. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-21898-9_32

    Chapter  Google Scholar 

  11. Wikipedia: Coq – Wikipedia, the free encyclopedia (2014). http://en.wikipedia.org/w/index.php?title=Coq

  12. Botana, F., Kovács, Z., Weitzhofer, S.: Implementing theorem proving in GeoGebra by using a Singular webservice. In: Proceedings EACA 2012, Libro de Resúmenes del XIII Encuentro de Álgebra Computacional y Aplicaciones. Universidad de Alcalá, pp. 67–70 (2012)

    Google Scholar 

  13. Kovács, S., Recio, T., Weitzhofer, S.: Implementing theorem proving in GeoGebra by exact check of a statement in a bounded number of test cases. In: Proceedings EACA 2012, Libro de Resúmenes del XIII Encuentro de Álgebra Computacional y Aplicaciones. Universidad de Alcalá, pp. 123–126 (2012)

    Google Scholar 

  14. Petrović, I., Kovács, Z., Weitzhofer, S., Hohenwarter, M., Janičić, P.: Extending GeoGebra with automated theorem proving by using OpenGeoProver. Presentation at the CADGME 2012 Conference in Novi Sad, Serbia (2012). http://ggb1.idm.jku.at/~kovzol/talks/cadgme12/06/06.pdf

  15. Recio, T.: Dynamic Geometry and Mathematics: few trains on a two-way track. Keynote Presentation at the CADGME 2014 Conference, Halle (Saale), Germany (2014). http://cadgme2014.cermat.org/node/82?width=640&height=450

  16. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., Weitzhofer, S.: Automated theorem proving in GeoGebra: current achievements. J. Autom. Reasoning 55, 39–59 (2015). Kindly check and confirm the edit made in Ref. [16]

    Article  Google Scholar 

  17. Ye, Z., Chou, S., Gao, X.: Visually dynamic presentation of proofs in plane geometry, part 1. Basic features and the manual input method. J. Autom. Reasoning 45, 213–241 (2010)

    Article  MathSciNet  Google Scholar 

  18. Ye, Z., Chou, S., Gao, X.: Visually dynamic presentation of proofs in plane geometry, part 2. Automated generation of visually dynamic presentations with the full-angle method and the deductive database method. J. Autom. Reasoning 45, 243–266 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symbolic Comput. 2, 399–408 (1986). http://www.sciencedirect.com/science/article/pii/S0747717186800074

    Article  MathSciNet  Google Scholar 

  20. Wu, W.T.: On the decision problem and the mechanization of theorem proving in elementary geometry. Sci. Sinica 21, 157–179 (1978)

    Google Scholar 

  21. Janičić, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. J. Autom. Reasoning 48, 489–532 (2012)

    Article  Google Scholar 

  22. Chou, S., Gao, X., Zhang, J.: A deductive database approach to automated geometry theorem proving and discovering. J. Autom. Reasoning 25, 219–246 (2000)

    Article  MathSciNet  Google Scholar 

  23. Desfontaines, D.: Theorem proving in GeoGebra: implementing the area method into OpenGeoProver (internship report) (2012). http://www.eleves.ens.fr/home/desfonta/InternshipReport.pdf

  24. Baeta, N., Quaresma, P.: The full angle method on the OpenGeoProver. In: Lange, C., Aspinall, D., Carette, J., Davenport, J., Kohlhase, A., Kohlhase, M., Libbrecht, P., Quaresma, P., Rabe, F., Sojka, P., Whiteside, I., Windsteiger, W. (eds.) MathUI, OpenMath, PLMMS and ThEdu Workshops and Work in Progress at the Conference on Intelligent Computer Mathematics, CEUR Workshop Proceedings, number 1010, Aachen (2013)

    Google Scholar 

  25. Weitzhofer, S.: Mechanic proving of theorems in plane geometry. Master’s thesis, Johannes Kepler University, Linz, Austria (2013). http://test.geogebra.org/~kovzol/guests/SimonWeitzhofer/DiplArbeit.pdf

  26. Recio, T., Vélez, M.: Automatic discovery of theorems in elementary geometry. J. Autom. Reasoning 23, 63–82 (1999)

    Article  Google Scholar 

  27. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3-1-6 – A computer algebra system for polynomial computations (2012). http://www.singular.uni-kl.de

  28. Ancsin, G., Hohenwarter, M., Kovács, Z.: GeoGebra goes web. Electron. J. Math. Technol. 7, 412–418 (2013)

    Google Scholar 

  29. Hearn, A.C.: REDUCE User’s Manual Version 3.8 (2004). http://reduce-algebra.com/docs/reduce.pdf

  30. Parisse, B.: Giac/Xcas, a free computer algebra system (2013). http://www-fourier.ujf-grenoble.fr/~parisse/giac.html

  31. Kovács, Z., Parisse, B.: Giac and GeoGebra – improved Gröbner basis computations, Special semester on applications of algebra and number theory, workshop 3 on computer algebra and polynomials (2013). https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/parisse-kovacs.pdf

  32. Kovács, Z., Parisse, B.: Giac and GeoGebra – improved Gröbner basis computations. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials. LNCS, vol. 8942, pp. 126–138. Springer, Heidelberg (2015)

    Google Scholar 

  33. Zakai, A.: Emscripten: an LLVM-to-JavaScript compiler (2013). https://github.com/kripken/emscripten/blob/master/docs/paper.pdf?raw=true

Download references

Acknowledgments

Ivan Petrović, PhD student of University of Belgrade, the primary author of OGP had a great part in making OGP generally work. Gábor Ancsin was the leader of the HTML5 based experiments in the GeoGebra Team. Michael Borcherds and Zbyněk Konečný helped regularly to find and eliminate bugs during the development. Last but not least, Bernard Parisse kindly helped in improving Giac to be even more robust for Gröbner basis computations.

Bruno Buchberger kindly invited the author of this paper to present a preliminary version of this paper at the RISC Theorema seminar on 9 April 2014. (The slides for that talk are available to download at http://ggb1.idm.jku.at/~kovzol/talks/risc2014-2/.)

Pedro Quaresma and Francisco Botana supported the author to present essential parts of this paper at the ADG 2014 conference on 10 July 2014. (Slides and supplementary materials for this talk can be accessed at http://ggb1.idm.jku.at/~kovzol/talks/adg2014/.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Kovács .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Log Output for Ceva’s Theorem

figure c

1.2 Log Output for Thales’s Circle Theorem

figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kovács, Z. (2015). The Relation Tool in GeoGebra 5. In: Botana, F., Quaresma, P. (eds) Automated Deduction in Geometry. ADG 2014. Lecture Notes in Computer Science(), vol 9201. Springer, Cham. https://doi.org/10.1007/978-3-319-21362-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21362-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21361-3

  • Online ISBN: 978-3-319-21362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics