Skip to main content

Computer Theorem Proving for Verifiable Solving of Geometric Construction Problems

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9201))

Included in the following conference series:

Abstract

Over the last sixty years, a number of methods for automated theorem proving in geometry, especially Euclidean geometry, have been developed. Almost all of them focus on universally quantified theorems. On the other hand, there are only few studies about logical approaches to geometric constructions. Consequently, automated proving of \(\forall \exists \) theorems, that correspond to geometric construction problems, have seldom been studied. In this paper, we present a formal logical framework describing the traditional four phases process of geometric construction solving. It leads to automated production of constructions with corresponding human readable correctness proofs. To our knowledge, this is the first study in that direction. In this paper we also discuss algebraic approaches for solving ruler-and-compass construction problems. There are famous problems showing that it is often difficult to prove non-existence of constructible solutions for some tasks. We show how to put into practice well-known algebra-based methods and, in particular, field theory, to prove RC-constructibility in the case of problems from Wernick’s list.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The English word ruler designates a tool with measurement in opposition to straightedge. In this paper, however, we will conform to the habits and use the terms ruler-and-compass constructibility or resolvability, in short RC-constructibility or RC-resolvability, for straightedge and compass constructibility or resolvability.

  2. 2.

    In later stages of the solution, the given condition \(\varPhi _a(X)\) may be extended to some condition \(\varPhi \) for which (3) holds.

  3. 3.

    This formula may involve disjunctions corresponding to different “cases” for X and Y. For instance, \((A \ne B \wedge midpoint(C,A,B)) \vee (A=B \wedge C=A)\).

  4. 4.

    Strictly speaking, functions \(RC_{i,k}\) may involve more than only ruler and compass. For instance, it may be the case that only one intersection point of two circles can be picked (e.g. “that is different from the point...”, “that is not on the same side...”, etc.). Also, some of \(RC_{i,k}\) may be non-deterministic, for instance “pick a point on the line ...”.

  5. 5.

    One can try a finite number of predicates over X.

  6. 6.

    All proofs can be found here: http://www.matf.bg.ac.rs/~vesnap/adg2014_wernick6.thy.

  7. 7.

    The ArgoTriCS tool, along with the list of lemmas used, is available on: http://argo.matf.bg.ac.rs/?content=downloads.

  8. 8.

    The technical report can be found here: http://www.mmrc.iss.ac.cn/pub/mm15.pdf/gao.pdf.

  9. 9.

    http://www.maplesoft.com/.

References

  1. Aldefeld, B.: Variations of geometries based on a geometric-reasoning method. Comput. Aided Des. 20(3), 117–126 (1988)

    Article  Google Scholar 

  2. Boutry, P., Narboux, J., Schreck, P., Braun, G.: Using small scale automation to improve both accessibility and readability of formal proofs in geometry. In: Proceedings of the 10th International Workshop on Automated Deduction in Geometry (ADG 2014), CISUC TR2014/02, Universidade de Coimbra (2014)

    Google Scholar 

  3. Braun, G., Narboux, J.: From Tarski to Hilbert. In: Ida, T., Fleuriot, J. (eds.) ADG 2012. LNCS, vol. 7993, pp. 89–109. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Buoma, W., Fudos, I., Hoffman, C., Cai, J., Paige, R.: A geometric constraint solver. CAD 27, 487–501 (1995)

    Google Scholar 

  5. Buthion, M.: Un programme qui résoud formellement des problèmes de constructions géométriques. RAIRO Informatique 3(4), 353–387 (1979)

    MathSciNet  Google Scholar 

  6. Chen, G.: Les constructions à la règle et au compas par une méthode algébrique. Technical report Rapport de DEA, Université Louis Pasteur (1992)

    Google Scholar 

  7. Djorić, M., Janičić, P.: Constructions, instructions, interactions. Teach. Mathe. Appl. 23(2), 69–88 (2004)

    Google Scholar 

  8. Dufourd, J.-F., Mathis, P., Schreck, P.: Geometric construction by assembling solved subfigures. Artif. Intell. J. 99(1), 73–119 (1998)

    Article  MathSciNet  Google Scholar 

  9. Essert-Villard, C., Schreck, P., Dufourd, J.-F.: Sketch-based pruning of a solution space within a formal geometric constraint solver. Artif. Intell. 124(1), 139–159 (2000)

    Article  MathSciNet  Google Scholar 

  10. Gao, X.-S., Chou, S.-C.: Solving geometric constraint systems. ii. A symbolic approach and decision of rc-constructibility. Comput. Aided Des. 30(2), 115–122 (1998)

    Article  Google Scholar 

  11. Gelernter, H.: Realization of a geometry theorem proving machine. In: Proceedings of the International Conference Information Processing, Paris, pp. 273–282, 15–20 June 1959

    Google Scholar 

  12. Génevaux, J.-D., Narboux, J., Schreck, P.: Formalization of Wu’s simple method in Coq. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 71–86. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Grégoire, B., Pottier, L., Théry, L.: Proof certificates for algebra and their application to automatic geometry theorem proving. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 42–59. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry constructions. In: Programming Language Design and Implementation, PLDI 2011, pp. 50–61. ACM (2011)

    Google Scholar 

  15. Janičić, P.: Geometry constructions language. J. Autom. Reasoning 44(1–2), 3–24 (2010)

    Google Scholar 

  16. Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of geometric constraint systems: a survey. Int. J. Comput. Geom. Appl. 16(5–6), 379–414 (2006). CNRS MathSTIC

    Article  MathSciNet  Google Scholar 

  17. Landau, S., Miller, G.L.: Solvability by radicals is in polynomial time. J. Comput. Syst. Sci. 30(2), 179–208 (1985)

    Article  MathSciNet  Google Scholar 

  18. Lebesgue, H.: Leçons sur les constructions géométriques. Gauthier-Villars, Paris (1950) (in French), re-edition by Editions Jacques Gabay, France

    Google Scholar 

  19. Lemaire, F., Moreno-Maza, M., Xie, Y.: The RegularChains library in Maple 10. In: Kotsireas, I.S. (ed.) Proceedings of Maple Summer Conference 2005, Waterloo, Canada, pp. 355–368 (2005)

    Google Scholar 

  20. Marić, F., Petrović, I., Petrović, D., Janičić, P.: Formalization and implementation of algebraic methods in geometry. In: Quaresma, P., Back, R.-J. (eds.) Proceedings of First Workshop on CTP Components for Educational Software, Wrocław, Poland, 31 July 2011. Electronic Proceedings in Theoretical Computer Science, vol. 79, pp. 63–81. Open Publishing Association (2012)

    Google Scholar 

  21. Marinković, V., Janičić, P.: Towards understanding triangle construction problems. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 127–142. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283, p. 3. Springer, Heidelberg (2002)

    Book  Google Scholar 

  23. Owen, J.: Algebraic solution for geometry from dimensional constraints. In: Proceedings of the 1th ACM Symposium of Solid Modeling and CAD/CAM Applications, pp. 397–407. ACM Press (1991)

    Google Scholar 

  24. Scandura, J.M., Durnin, J.H., Wulfeck II, W.H.: Higher order rule characterization of heuristics for compass and straight edge constructions in geometry. Artif. Intell. 5(2), 149–183 (1974)

    Article  Google Scholar 

  25. Schreck, P.: Robustness in CAD Geometric Constructions. In: IV 2001, pp. 111–116 (2001)

    Google Scholar 

  26. Schreck, P.: Modélisation et implantation d’un système à base de connaissances pour les constructions géométriques. Revue d’Intelligence Artificielle 8(3), 223–247 (1994)

    Google Scholar 

  27. Schreck, P., Mathis, P.: Rc-constructibility of problems in Wernick’s and Connelly’s lists. In: Proceedings of the 10th International Workshop on Automated Deduction in Geometry (ADG 2014), CISUC TR2014/02, Universidade de Coimbra (2014)

    Google Scholar 

  28. Stojanović, S., Pavlović, V., Janičić, P.: A coherent logic based geometry theorem prover capable of producing formal and readable proofs. In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) ADG 2010. LNCS, vol. 6877, pp. 201–220. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Wernick, W.: Triangle constructions vith three located points. Math. Mag. 55(4), 227–230 (1982)

    Article  MathSciNet  Google Scholar 

  30. Pambuccian, V.: Axiomatizing geometric constructions. J. Appl. Logic 6(1), 24–46 (2008)

    Article  MathSciNet  Google Scholar 

  31. Beeson, M.: Logic of ruler and compass constructions. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 46–55. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Marinković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Marinković, V., Janičić, P., Schreck, P. (2015). Computer Theorem Proving for Verifiable Solving of Geometric Construction Problems. In: Botana, F., Quaresma, P. (eds) Automated Deduction in Geometry. ADG 2014. Lecture Notes in Computer Science(), vol 9201. Springer, Cham. https://doi.org/10.1007/978-3-319-21362-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21362-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21361-3

  • Online ISBN: 978-3-319-21362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics