Skip to main content

Scene Based Reasoning

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9205))

Included in the following conference series:

Abstract

This paper describes Scene Based Reasoning (SBR), a cognitive architecture based on the notions of “scene” and “plan”. Scenes represent real-world 3D scenes as well as planner states. Introspection maps internal SBR data-structures into 2D “scene diagrams” for self-modeling and meta-reasoning. On the lowest level, scenes are represented as 3D scene graphs (as in computer gaming), while higher levels use Description Logic to model the relationships between scene objects. A plethora of subsystems implement perception, action, learning and control operations on the level of “plans”, with scenes acting as planner states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R., Lebiere, C.: The newell test for a theory of cognition. Behavioral and Brain Sciences 26(05), 587–601 (2003)

    MATH  Google Scholar 

  2. Brachman, R.J.: What’s in a concept: structural foundations for semantic networks. International Journal of Man-Machine Studies 9(2), 127–152 (1977)

    Article  Google Scholar 

  3. Carberry, S.: Techniques for plan recognition. User Modeling and User-Adapted Interaction 11(1–2), 31–48 (2001)

    Article  MATH  Google Scholar 

  4. Croft, D., Thagard, P.: Dynamic imagery: a computational model of motion and visual analogy. In: Model-Based Reasoning, pp. 259–274. Springer (2002)

    Google Scholar 

  5. Davis, E., Marcus, G.: The scope and limits of simulation in cognition and automated reasoning. Artificial Intelligence (2013)

    Google Scholar 

  6. Erol, K.: Hierarchical task network planning: formalization, analysis, and implementation. Ph.D. thesis, University of Maryland (1996)

    Google Scholar 

  7. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial intelligence 2(3), 189–208 (1972)

    Google Scholar 

  8. Ghallab, M., Nau, D., Traverso, P.: Automated planning: theory & practice. Elsevier (2004)

    Google Scholar 

  9. Gil, Y.: Description logics and planning. AI Magazine 26(2), 73 (2005)

    Google Scholar 

  10. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1, Springer (2014)

    Google Scholar 

  11. Hartanto, R., Hertzberg, J.: Fusing DL reasoning with HTN planning. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 62–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Jim_enez Celorrio, S.: Planning and learning under uncertainty. Ph.D. thesis, Universidad Carlos III de Madrid, Escuela Politécnica Superior (2011)

    Google Scholar 

  13. Konolige, K., Nilsson, N.J.: Multiple-agent planning systems. AAAI. 80, 138–142 (1980)

    Google Scholar 

  14. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence. Artificial intelligence 33(1), 1–64 (1987)

    Article  MathSciNet  Google Scholar 

  15. Langley, P.: An adaptive architecture for physical agents. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence, 2005. Proceedings, pp. 18–25. IEEE (2005)

    Google Scholar 

  16. Langley, P.: Altering the ICARUS architecture to model social cognition (2013). http://www.isle.org/~langley/talks/onr.6.13.ppt

  17. Langley, P., McKusick, K.B., Allen, J.A., Iba, W.F., Thompson, K.: A design for the ICARUS architecture. ACM SIGART Bulletin 2(4), 104–109 (1991)

    Article  Google Scholar 

  18. Metzinger, T.: Being no One: The Self-Model Theory of Subjectivity. MIT Press (2003)

    Google Scholar 

  19. Nuxoll, A.M., Laird, J.E.: Extending cognitive architecture with episodic memory. In: Proceedings of the National Conference on Artificial Intelligence. vol. 22, p. 1560. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2007)

    Google Scholar 

  20. Quantz, J.J., Dunker, G., Bergmann, F., Kellner, I.: The FLEX system. KIT Report 124, Technische Universität Berlin (1995)

    Google Scholar 

  21. Quillian, M.: A notation for representing conceptual information: An application to semantics and mechanical English paraphrasing, sp-1395. System Development Corporation, Santa Monica (1963)

    Google Scholar 

  22. Santos Jr., E.: A cognitive architecture for adversary intent inferencing: Structure of knowledge and computation. In: AeroSense 2003, pp. 182–193. International Society for Optics and Photonics (2003)

    Google Scholar 

  23. Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Erlbaum (1977)

    Google Scholar 

  24. Strauss, P.S.: IRIS inventor, a 3d graphics toolkit. In: Proceedings of the Eighth Annual Conference on Object-oriented Programming Systems, Languages, and Applications, pp. 192–200. OOPSLA 1993, ACM, New York, NY, USA (1993). http://doi.acm.org/10.1145/165854.165889

  25. Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., Blythe, J.: Integrating planning and learning: The prodigy architecture. Journal of Experimental & Theoretical Artificial Intelligence 7(1), 81–120 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Bergmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bergmann, F., Fenton, B. (2015). Scene Based Reasoning. In: Bieger, J., Goertzel, B., Potapov, A. (eds) Artificial General Intelligence. AGI 2015. Lecture Notes in Computer Science(), vol 9205. Springer, Cham. https://doi.org/10.1007/978-3-319-21365-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21365-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21364-4

  • Online ISBN: 978-3-319-21365-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics