Skip to main content

Are There Deep Reasons Underlying the Pathologies of Today’s Deep Learning Algorithms?

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9205))

Included in the following conference series:

Abstract

Some currently popular and successful deep learning architectures display certain pathological behaviors (e.g. confidently classifying random data as belonging to a familiar category of nonrandom images; and misclassifying miniscule perturbations of correctly classified images). It is hypothesized that these behaviors are tied with limitations in the internal representations learned by these architectures, and that these same limitations would inhibit integration of these architectures into heterogeneous multi-component AGI architectures. It is suggested that these issues can be worked around by developing deep learning architectures that internally form states homologous to image-grammar decompositions of observed entities and events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bengio, Y., Goodfellow, I.J., Courville, A.: Deep learning (2015). http://www.iro.umontreal.ca/bengioy/dlbook, book in preparation for MIT Press

  2. Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X., Williams, J., Gong, Y., Acero, A.: Recent advances in deep learning for speech research at microsoft. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2013)

    Google Scholar 

  3. Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Cognitive Neuroscience: The Biology of the Mind. W W Norton (2009)

    Google Scholar 

  4. Goertzel, B.: Perception Processing for General Intelligence: Bridging the Symbolic/Subsymbolic Gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 79–88. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy. Springer, Atlantis Thinking Machines (2013)

    Google Scholar 

  6. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 2: The CogPrime Architecture for Integrative, Embodied AGI. Springer, Atlantis Thinking Machines (2013)

    Google Scholar 

  7. Hannun, A.Y., Case, C., Casper, J., Catanzaro, B.C., Diamos, G., Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., Ng, A.Y.: Deep speech: Scaling up end-to-end speech recognition. CoRR abs/1412.5567 (2014). http://arxiv.org/abs/1412.5567

  8. Le, Q.V., Ranzato, M., Monga, R., Matthieu Devin, K.C., Corrado, G.S., Dean, J., Ng., A.Y.: Building high-level features using large scale unsupervised learning. In: Proceedings of the Twenty-Ninth International Conference on Machine Learning (2012)

    Google Scholar 

  9. Lee, D., Zhang, S., Biard, A., Bengio, Y.: Target propagation. CoRR abs/1412.7525 (2014). http://arxiv.org/abs/1412.7525

  10. Li, G., Lou, Z., Wang, L., Li, X., Freeman, W.J.: Application of chaotic neural model based on olfactory system on pattern recognition. ICNC 1, 378–381 (2005)

    Google Scholar 

  11. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. CoRR abs/1412.1897 (2014). http://arxiv.org/abs/1412.1897

  12. Ohlsson, S.: Deep Learning: How the Mind Overrides Experience. Cambridge University Press (2006)

    Google Scholar 

  13. Schmidhuber, J.: Deep learning in neural networks: An overview. CoRR abs/1404.7828 (2014). http://arxiv.org/abs/1404.7828

  14. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013). http://arxiv.org/abs/1312.6199

  15. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level performance in face verification. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  16. Zhou, E., Cao, Z., Yin, Q.: Naive-deep face recognition: Touching the limit of lfw benchmark or not? (2014). http://arxiv.org/abs/1501.04690

  17. Zhu, S.C., Mumford, D.: A stochastic grammar of images. Found. Trends. Comput. Graph. Vis. 2(4), 259–362 (2006). http://dx.doi.org/10.1561/0600000018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Goertzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Goertzel, B. (2015). Are There Deep Reasons Underlying the Pathologies of Today’s Deep Learning Algorithms?. In: Bieger, J., Goertzel, B., Potapov, A. (eds) Artificial General Intelligence. AGI 2015. Lecture Notes in Computer Science(), vol 9205. Springer, Cham. https://doi.org/10.1007/978-3-319-21365-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21365-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21364-4

  • Online ISBN: 978-3-319-21365-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics