Abstract
Some currently popular and successful deep learning architectures display certain pathological behaviors (e.g. confidently classifying random data as belonging to a familiar category of nonrandom images; and misclassifying miniscule perturbations of correctly classified images). It is hypothesized that these behaviors are tied with limitations in the internal representations learned by these architectures, and that these same limitations would inhibit integration of these architectures into heterogeneous multi-component AGI architectures. It is suggested that these issues can be worked around by developing deep learning architectures that internally form states homologous to image-grammar decompositions of observed entities and events.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bengio, Y., Goodfellow, I.J., Courville, A.: Deep learning (2015). http://www.iro.umontreal.ca/bengioy/dlbook, book in preparation for MIT Press
Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X., Williams, J., Gong, Y., Acero, A.: Recent advances in deep learning for speech research at microsoft. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2013)
Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Cognitive Neuroscience: The Biology of the Mind. W W Norton (2009)
Goertzel, B.: Perception Processing for General Intelligence: Bridging the Symbolic/Subsymbolic Gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 79–88. Springer, Heidelberg (2012)
Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy. Springer, Atlantis Thinking Machines (2013)
Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 2: The CogPrime Architecture for Integrative, Embodied AGI. Springer, Atlantis Thinking Machines (2013)
Hannun, A.Y., Case, C., Casper, J., Catanzaro, B.C., Diamos, G., Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., Ng, A.Y.: Deep speech: Scaling up end-to-end speech recognition. CoRR abs/1412.5567 (2014). http://arxiv.org/abs/1412.5567
Le, Q.V., Ranzato, M., Monga, R., Matthieu Devin, K.C., Corrado, G.S., Dean, J., Ng., A.Y.: Building high-level features using large scale unsupervised learning. In: Proceedings of the Twenty-Ninth International Conference on Machine Learning (2012)
Lee, D., Zhang, S., Biard, A., Bengio, Y.: Target propagation. CoRR abs/1412.7525 (2014). http://arxiv.org/abs/1412.7525
Li, G., Lou, Z., Wang, L., Li, X., Freeman, W.J.: Application of chaotic neural model based on olfactory system on pattern recognition. ICNC 1, 378–381 (2005)
Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. CoRR abs/1412.1897 (2014). http://arxiv.org/abs/1412.1897
Ohlsson, S.: Deep Learning: How the Mind Overrides Experience. Cambridge University Press (2006)
Schmidhuber, J.: Deep learning in neural networks: An overview. CoRR abs/1404.7828 (2014). http://arxiv.org/abs/1404.7828
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013). http://arxiv.org/abs/1312.6199
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level performance in face verification. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Zhou, E., Cao, Z., Yin, Q.: Naive-deep face recognition: Touching the limit of lfw benchmark or not? (2014). http://arxiv.org/abs/1501.04690
Zhu, S.C., Mumford, D.: A stochastic grammar of images. Found. Trends. Comput. Graph. Vis. 2(4), 259–362 (2006). http://dx.doi.org/10.1561/0600000018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Goertzel, B. (2015). Are There Deep Reasons Underlying the Pathologies of Today’s Deep Learning Algorithms?. In: Bieger, J., Goertzel, B., Potapov, A. (eds) Artificial General Intelligence. AGI 2015. Lecture Notes in Computer Science(), vol 9205. Springer, Cham. https://doi.org/10.1007/978-3-319-21365-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-21365-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21364-4
Online ISBN: 978-3-319-21365-1
eBook Packages: Computer ScienceComputer Science (R0)