Skip to main content

Bin Packing Game with an Interest Matrix

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9198))

Included in the following conference series:

  • 1389 Accesses

Abstract

In this paper we study a game problem, called bin packing game with an interest matrix, which is a generalization of all the currently known bin packing games. In this game, there are some items with positive sizes and identical bins with unit capacity as in the classical bin packing problem; additionally we are given an interest matrix with rational entries, whose element \(a_{ij}\) stands for how much item i likes item j. The payoff of item i is the sum of \(a_{ij}\) over all items j in the same bin with item i, and each item wants to stay in a bin where it can fit and its payoff is maximized. We find that if the matrix is symmetric, a pure Nash Equilibrium always exists. However the PoA (Price of Anarchy) may be very large, therefore we consider several special cases and give bounds for PoA in them. We present some results for the asymmetric case, too.

Z. Wang—Partially supported by NSFC No. 11371216.

X. Han—Partially supported by NSFC(11101065), LJQ2012003, RGC(HKU716412E) and “the Fundamental Research Funds for the Central Universities”.

G. Dósa, Z. Tuza—Partially supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0072.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bilò, V.: On the packing of selfish items. In: Proc. of the 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), 9 p. IEEE (2006)

    Google Scholar 

  2. Coffman Jr, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531. Springer, New York (2013)

    Chapter  Google Scholar 

  3. Coffman, E.G., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: combinatorial analysis. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 151–208. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  4. Dosa, G., Epstein, L.: Generalized selfish bin packing, arXiv:1202.4080, 1–43 (2012)

  5. Dósa, G., Epstein, L.: The convergence time for selfish bin packing. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 37–48. Springer, Heidelberg (2014)

    Google Scholar 

  6. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: Portier, N., Wilke, T. (eds) Proceedings of the 30th Symposium on the Theoretical Aspects of Computer Science (STACS 2013), pp. 538–549, Kiel, Germany (2013)

    Google Scholar 

  7. Dósa, G., Sgall, J.: Optimal analysis of best fit bin packing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 429–441. Springer, Heidelberg (2014)

    Google Scholar 

  8. Epstein, L., Kleiman, E.: Selfish Bin Packing. Algorithmica 60(2), 368–394 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    Google Scholar 

  10. Ma, R., Dósa, G., Han, X., Ting, H.-F., Ye, D., Zhang, Y.: A note on a selfish bin packing problem. Journal of Global Optimization 56(4), 1457–1462 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ullman, J.D.: The performance of a memory allocation algorithm. Technical Report 100, Princeton Univ., Princeton, NJ (1971)

    Google Scholar 

  13. Yu, G., Zhang, G.: Bin packing of selfish items. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 446–453. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Z., Han, X., Dósa, G., Tuza, Z. (2015). Bin Packing Game with an Interest Matrix . In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21398-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21397-2

  • Online ISBN: 978-3-319-21398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics